Mostrar el registro sencillo del ítem

dc.contributor.authorBarrios, Erik
dc.contributor.authorSierra, Enrique
dc.contributor.authorRomero, Lenny A.
dc.contributor.authorMillán, María S.
dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.date.accessioned2022-01-27T14:53:16Z
dc.date.available2022-01-27T14:53:16Z
dc.date.issued2021-09-06
dc.date.submitted2022-01-26
dc.identifier.citationErik Barrios, Enrique Sierra, Lenny A. Romero, María S. Millán, Andres G. Marrugo. Opt. Pura Apl. 54 (3) 1-14 (2021). DOI: 10.7149/OPA.54.3.51060spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10414
dc.description.abstractDust particle artifacts are present in all imaging modalities but have more adverse consequences in medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms. We propose a method for detecting and accurately segmenting dust artifacts in retinal images based on multi-scale template-matching on several input images and an iterative segmentation via an inpainting approach. The inpainting is done through dictionary learning and sparse-based representation. The artifact segmentation is refined by comparing the original image to the initial restoration. On average, 90% of the dust artifacts were detected in the test images, with state-of-theart restoration results. All detected artifacts were accurately segmented and removed. Even the most challenging artifacts located on top of blood vessels were removed. Thus, ensuring the continuity of the retinal structures. The proposed method successfully detects and removes dust artifacts in retinal images, which could be used to avoid false-positive lesion detections or as an image quality criterion. An implementation of the proposed algorithm can be accessed and executed through a Code Ocean compute capsulespa
dc.format.extent14 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceÓptica pura y aplicada - vol. 54 n° 3 (2021)spa
dc.titleDetection and removal of dust artifacts in retinal images via sparse-based inpaintingspa
dcterms.bibliographicCitationAbràmoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal imaging and image analysis. IEEE reviews in biomedical engineering, 3, 169-208.spa
dcterms.bibliographicCitationB. J. Fenner, R. L. M. Wong, W.-C. Lam, et al., “Advances in Retinal Imaging and Applications in Diabetic Retinopathy Screening: A Review,” Ophthalmology and Therapy 7, 333–346 (2018)spa
dcterms.bibliographicCitationA. G. Marrugo and M. S. Millan, “Retinal image analysis: Image processing and feature extraction oriented to the clinical task,” Opt. Pura Apl 50(1), 49–62 (2017).spa
dcterms.bibliographicCitationE. Sierra, A. G. Marrugo, and M. S. Millán, “Dust particle artifact detection and removal in retinal images,” Opt. Pura Apl 50(4), 379–387 (2017)spa
dcterms.bibliographicCitationA. G. Marrugo, M. S. Millan, M. Sorel, et al., “Restoration of retinal images with spacevariant blur,” Journal of Biomedical Optics 19(1), 016023 (2014).spa
dcterms.bibliographicCitationH. Narasimha-Iyer, A. Can, B. Roysam, et al., “Robust detection and classification of longitudinal changes in color retinal fundus images for monitoring diabetic retinopathy,” IEEE Trans on Biomed Eng 53(6), 1084–1098 (2006).spa
dcterms.bibliographicCitationP. F. Ordóñez, C. M. Cepeda, J. Garrido, et al., “Classification of images based on small local features: a case applied to microaneurysms in fundus retina images,” Journal of Medical Imaging 4(4), 041309 (2017).spa
dcterms.bibliographicCitationA. Manjaramkar and M. Kokare, “Statistical geometrical features for microaneurysm detection,” Journal of digital imaging 31(2), 224–234 (2018).spa
dcterms.bibliographicCitationM. Zamfir, E. Steinberg, Y. Prilutsky, et al., “Image defect map creation using batches of digital images,” (2010). Patent US 2010/0321537 A1.spa
dcterms.bibliographicCitationR. G. Willson, M. W. Maimone, A. E. Johnson, et al., “An optical model for image artifacts produced by dust particles on lenses,” 8th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (i-SAIRAS) (2005).spa
dcterms.bibliographicCitationC. Li, K. Zhou, and S. Lin, “Removal of dust artifacts in focal stack image sequences. ,” in Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), 2602–2605, IEEE (2012).spa
dcterms.bibliographicCitationH. Altamar-Mercado, A. Patino-Vanegas, and A. G. Marrugo, “Extended Focused Image in White Light Scanning Interference Microscopy,” in Imaging and Applied Optics 2019, ITh1C.3, Optical Society of America, (Munich) (2019).spa
dcterms.bibliographicCitationC. Zhou and S. Lin, “Removal of image artifacts due to sensor dust,” in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, 1–8, IEEE (2007)spa
dcterms.bibliographicCitationA. D. Mora, J. Soares, and J. M. Fonseca, “A template matching technique for artifacts detection in retinal images,” in 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), 717–722, IEEE (2013). [doi:10.1109/ispa.2013.6703831]spa
dcterms.bibliographicCitationM. Niemeijer, M. D. Abramoff, and B. van Ginneken, “Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening,” Medical image analysis 10(6), 888–898 (2006). [doi:10.1016/j.media.2006.09.006].spa
dcterms.bibliographicCitationM. S. Millan, A. G. Marrugo, and F. Alba-Bueno, “Quality Changes in Fundus Images of Pseudophakic Eyes,” Opt. Pura Apl. 51(4), 50015:1–8 (2018).spa
dcterms.bibliographicCitationT. Köhler, A. Budai, M. F. Kraus, et al., “Automatic no-reference quality assessment for retinal fundus images using vessel segmentation,” in Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, 95–100, IEEE (2013).spa
dcterms.bibliographicCitationD. Veiga, C. Pereira, M. Ferreira, et al., “Quality evaluation of digital fundus images through combined measures.,” Journal of Medical Imaging 1(1), 014001 (2014).spa
dcterms.bibliographicCitationS. A. A. Shah, A. Laude, I. Faye, et al., “Automated microaneurysm detection in diabetic retinopathy using curvelet transform,” Journal of Biomedical Optics 21(10), 101404 (2016).spa
dcterms.bibliographicCitationP. Yang, L. Chen, J. Tian, et al., “Dust particle detection in surveillance video using salient visual descriptors,” Computers & Electrical Engineering 62, 224–231 (2017).spa
dcterms.bibliographicCitationL. Chen, D. Zhu, J. Tian, et al., “Dust particle detection in traffic surveillance video using motion singularity analysis,” Digital Signal Processing 58, 127–133 (2016).spa
dcterms.bibliographicCitationL. Hu, L. Chen, and J. Cheng, “Gray spot detection in surveillance video using convolutional neural network,” in 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2806– 2810, IEEE (2018). [doi:10.1109/ICIEA.2018.8398187].spa
dcterms.bibliographicCitationD. A. Forsyth and J. Ponce, Computer vision: A modern approach, Prentice Hall (2011).spa
dcterms.bibliographicCitationK. Zeng, G. Erus, A. Sotiras, et al., “Abnormality Detection via Iterative Deformable Registration and Basis-Pursuit Decomposition,” Medical Imaging, IEEE Transactions on 35(8), 1937–1951 (2016).spa
dcterms.bibliographicCitationF. Girard, C. Kavalec, and F. Cheriet, “Statistical atlas-based descriptor for an early detection of optic disc abnormalities,” Journal of Medical Imaging 5(01), 1–15 (2019)spa
dcterms.bibliographicCitationC. Kou, W. Li, W. Liang, et al., “Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network,” Journal of Medical Imaging 6(02), 1–12 (2019).spa
dcterms.bibliographicCitationEnrique Sierra, Andres G Marrugo, Erik Barrios (2021) Dust particle artifact detection in retinal images [Source Code].spa
dcterms.bibliographicCitationR. C. Gonzalez, R. E. Woods, and S. L. Eddins, “Digital image processing using matlab,” Gatesmark Publishing (2009).spa
dcterms.bibliographicCitationJ. Lewis, “Fast normalized cross-correlation,” in Vision interface, 10(1), 120–123 (1995).spa
dcterms.bibliographicCitationJ. Lin, L. Yu, Q. Weng, et al., “Retinal image quality assessment for diabetic retinopathy screening: A survey,” Multimedia Tools and Applications, 1–27 (2019).spa
dcterms.bibliographicCitationA. Awati, H. C. Rao, and M. R. Patil, “Image Inpainting for Hemorrhage Detection in Mass Screening of Diabetic Retinopathy,” in Computing, Communication and Signal Processing, 1011–1019, Springer Singapore, Singapore (2018).spa
dcterms.bibliographicCitationM. Elad, “From exact to approximate solutions,” in Sparse and Redundant Representations, 79–109, Springer (2010)spa
dcterms.bibliographicCitationC. Guillemot and O. Le Meur, “Image inpainting: Overview and recent advances,” IEEE signal processing magazine 31(1), 127–144 (2014).spa
dcterms.bibliographicCitationE. M. Barrios, A. G. Marrugo, and M. S. Millán, “Lremoving dust artifacts in retinal images via dictionary learning and sparse-based inpainting,” in 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), 1–5, IEEE (2019).spa
dcterms.bibliographicCitationM. Aharon, M. Elad, A. Bruckstein, et al., “K-svd: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE Transactions on signal processing 54(11), 4311 (2006).spa
dcterms.bibliographicCitationK. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame design,” in Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE International Conference on, 5, 2443– 2446, IEEE (1999).spa
dcterms.bibliographicCitationS. Manat and Z. Zhang, “Matching pursuit in a time-frequency dictionary,” IEEE Trans Signal Processing 12, 3397–3451 (1993).spa
dcterms.bibliographicCitationN. Otsu, “A Threshold Selection Method from Gray-Level Histograms,” Systems, Man and Cybernetics, IEEE Transactions on 9(1), 62–66 (1979)spa
dcterms.bibliographicCitationE. Sierra, E. Barrios, A. G. Marrugo, et al., “Robust detection and removal of dust artifacts in retinal images via dictionary learning and sparse-based inpainting,” in Pattern Recognition and Tracking XXX, M. S. Alam, Ed., 109950L, SPIE (2019).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.7149/OPA.54.3.51060
dc.subject.keywordsArtifact detectionspa
dc.subject.keywordsDust particlespa
dc.subject.keywordsRetinal imagespa
dc.subject.keywordsFundus imagespa
dc.subject.keywordsImage restorationspa
dc.subject.keywordsDictionary learningspa
dc.subject.keywordsInpaintingspa
dc.subject.keywordsSensor artifactspa
dc.subject.keywordsSparse representationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.