Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía, Jose Doria
dc.contributor.authorOrozco-Henao, Cesar
dc.contributor.authorLeborgne, Roberto
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.coverage.spatialColombia
dc.date.accessioned2022-01-25T12:53:49Z
dc.date.available2022-01-25T12:53:49Z
dc.date.issued2021-04-07
dc.date.submitted2022-01-24
dc.identifier.citationDoria, Jose & Orozco, Cesar & Leborgne, Roberto & Montoya Giraldo, Oscar & Gil González, Walter. (2021). High impedance fault modeling and location for transmission line. Electric Power Systems Research. 196. 1-8. 10.1016/j.epsr.2021.107202.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10405
dc.description.abstractA fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to estimate the fault location in transmission lines. The mathematical formu lation considers the distributed parameters transmission line model for the estimation of the fault distance, and it is obtained by the application of Gauss-Newton method. Said method considers available voltage and current measurements at both terminals of the transmission line as well as the line parameters. Moreover, the method can be used for locating high and low impedance faults. Additionally, it is proposed an adjustable HIF model to validate its performance, which allows to generate synthetic high impedance faults by setting specific features of a HIF from simple input parameters. The error in fault location accuracy is under 0.1% for more than 90% of the performance test cases. The easy implementation of this method and encouraging test results indicate its potential for real-life applications.spa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectric Power Systems Research - vol. 196 (2021)spa
dc.titleHigh impedance fault modeling and location for transmission linespa
dcterms.bibliographicCitationPC37.250/D1.30, Nov 2019 - PC37.250/D1.30, Nov 2019 - IEEE Approved Draft Guide for Engineering, Implementation, and Management of System Integrity Protection Schemes - IEEE Standard n.d.spa
dcterms.bibliographicCitationP Anderson Analysis of Faulted Power Systems Institute of Electrical and Electronics, Inc, Iowa (1995)spa
dcterms.bibliographicCitationD. Hou, S. Carolina, D. Hou, S.E. Laboratories Detection of high-impedance faults in power distribution systems Power Syst. Conf. Adv. Metering, Prot. Control. Commun. Distrib. Resour., 2007 (2007), pp. 1-11spa
dcterms.bibliographicCitationM.M. Saha, J. Izykowski, E. Rosolowski Fault Location on Power Networks Springer, London (2010)spa
dcterms.bibliographicCitationRamamurthy T.A., Swarup K.S. High Impedance Fault detection using DWT for transmission and distribution networks. 2016 IEEE 6th Int Conf Power Syst 2016:1–6. 10.1109/ICPES.2016.7584004.spa
dcterms.bibliographicCitationA.E. Emanuel, D. Cyganski, J.A. Orr, S. Shiller, E.M. Gulachenski High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum IEEE Trans Power Deliv, 5 (1990), pp. 676-686, 10.1109/61.53070spa
dcterms.bibliographicCitationD.I. Jerrings, J.R. Linders Ground resistance-revisited IEEE Trans Power Deliv, 4 (1989), pp. 949-956, 10.1109/MPER.1989.4310592spa
dcterms.bibliographicCitationM. Aucoin Status of high impedance fault detection IEEE Trans Power Appar Syst, PAS-104 (1985), pp. 637-644, 10.1109/TPAS.1985.318999spa
dcterms.bibliographicCitationM. Jannati, L. Eslami Precise modeling of high impedance faults in power distribution system in EMTPWorks software J Electr Eng, 13 (2013), pp. 283-290spa
dcterms.bibliographicCitationS.R. Nam, J.K. Park, Y.C. Kang, T.H. Kim A modeling method of a high impedance fault in a distribution system using two series time-varying resistances in EMTP Power Eng. Soc. Summer Meet. 2001. Conf. Proc., 2 (2001), pp. 1175-1180, 10.1109/PESS.2001.970231spa
dcterms.bibliographicCitationW. Santos, B. Sousa, N. Dantas, F. Bezzerra, M. Cerqueira High impedance faults: from field tests to modeling J Control Autom Electr Syst, 24 (2013), pp. 885-896spa
dcterms.bibliographicCitationR.G. Ferraz Localização De Faltas De Alta impedância: Formulação Baseada Na Impedância Aparente e Nométodo De Mínimos Quadrados Universidade Federal do Rio Grande do Sul (2014)spa
dcterms.bibliographicCitationR.A. de Aguiar, A.L. Dalcastagnê, H.H. Zürn, R. Seara Impedance-based fault location methods: sensitivity analysis and performance improvement Electr Power Syst Res, 155 (2018), pp. 236-245, 10.1016/j.epsr.2017.10.021spa
dcterms.bibliographicCitationAkmaz D., Mamiş M.S., Arkan M., Tağluk M.E. Transmission line fault location using traveling wave frequencies and extreme learning machine. Electr. Power Syst. Res. 2018. 10.1016/j.epsr.2017.09.019.spa
dcterms.bibliographicCitationS.G. Di Santo, C.E.D.M. Pereira Fault location method applied to transmission lines of general configuration Int. J. Electr. Power Energy Syst., 69 (2015), pp. 287-294, 10.1016/j.ijepes.2015.01.014spa
dcterms.bibliographicCitationT. NengLing, C. JiaJia Wavelet-based approach for high impedance fault detection of high voltage transmission line Eur. Trans. Electr. Power, 18 (2008), pp. 79-92, 10.1002/etepspa
dcterms.bibliographicCitationJ. Doria-García, C. Orozco-Henao, L.U. Orozco Iurinic, J.D Pulgarín-rivera High impedance fault location : generalized extension for ground faults Electr. Power Energy Syst., 114 (2020), Article 105387, 10.1016/j.ijepes.2019.105387spa
dcterms.bibliographicCitationH. Livani, C Yaman Evrenosoglu A machine learning and Wavelet-Based fault location method for hybrid transmission lines IEEE Trans. Smart Grid., 5 (2014), pp. 51-59, 10.1109/TSG.2013.2260421spa
dcterms.bibliographicCitationD.T.W. Chan, X. Yibin A novel technique for high impedance fault identification IEEE Trans. Power Deliv., 13 (1998), pp. 738-744, 10.1109/61.686968spa
dcterms.bibliographicCitationM. Chen, J. Zhai, Z. Lang, J. Liao, Z. Fan High Impedance Fault Location in Transmission Line Using Nonlinear Frequency Analysis Life Syst. Model Intell. Comput., 6328 (2010), pp. 104-111spa
dcterms.bibliographicCitationL.U. Iurinic, A.R. Herrera-Orozco, R.G. Ferraz, A.S. Bretas Distribution systems high-impedance fault location: a parameter estimation approach IEEE Trans. Power Deliv., 31 (2016), pp. 1806-1814, 10.1109/TPWRD.2015.2507541spa
dcterms.bibliographicCitationM. Ghazizadeh-Ahsaee Accurate NHIF Locator Utilizing Two-End Unsynchronized Measurements, 28 (2013), pp. 419-426spa
dcterms.bibliographicCitationC.J. Lee, J.B. Park, J.R. Shin, Z.M. Radojevié A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition IEEE Trans. Power Syst., 21 (2006), pp. 1460-1462, 10.1109/TPWRS.2006.876646spa
dcterms.bibliographicCitationR.G. Ferraz, L.U. Iurinic, A.D. Filomena, D.S. Gazzana, A.S. Bretas Arc fault location: a nonlinear time varying fault model and frequency domain parameter estimation approach Int. J. Electr. Power Energy Syst., 80 (2016), pp. 347-355, 10.1016/j.ijepes.2016.02.003spa
dcterms.bibliographicCitationH. Saadat Power System Analysis.Pdf McGraw-Hill, New York (1999)spa
dcterms.bibliographicCitationS. Gratton, A.S. Lawless, N.K. Nichols Approximate Gauss-newton methods for nonlinear least squares problems SIAM J Optim, 18 (2007), pp. 106-132, 10.1137/050624935spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1016/j.epsr.2021.107202
dc.subject.keywordsDistributed parametersspa
dc.subject.keywordsElectrical power systemsspa
dc.subject.keywordsFault locationspa
dc.subject.keywordsHigh impedance faultspa
dc.subject.keywordsNonlinear arcing faultspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.