Mostrar el registro sencillo del ítem
High impedance fault modeling and location for transmission line
dc.contributor.author | García, Jose Doria | |
dc.contributor.author | Orozco-Henao, Cesar | |
dc.contributor.author | Leborgne, Roberto | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Gil-González, Walter | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-01-25T12:53:49Z | |
dc.date.available | 2022-01-25T12:53:49Z | |
dc.date.issued | 2021-04-07 | |
dc.date.submitted | 2022-01-24 | |
dc.identifier.citation | Doria, Jose & Orozco, Cesar & Leborgne, Roberto & Montoya Giraldo, Oscar & Gil González, Walter. (2021). High impedance fault modeling and location for transmission line. Electric Power Systems Research. 196. 1-8. 10.1016/j.epsr.2021.107202. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10405 | |
dc.description.abstract | A fault in a power system generates economic losses, security problems, social problems and can even take human lives. Therefore, it is necessary to have an efficient fault location strategy to reduce the exposure time and recurrence of the fault. This paper presents an impedance-based method to estimate the fault location in transmission lines. The mathematical formu lation considers the distributed parameters transmission line model for the estimation of the fault distance, and it is obtained by the application of Gauss-Newton method. Said method considers available voltage and current measurements at both terminals of the transmission line as well as the line parameters. Moreover, the method can be used for locating high and low impedance faults. Additionally, it is proposed an adjustable HIF model to validate its performance, which allows to generate synthetic high impedance faults by setting specific features of a HIF from simple input parameters. The error in fault location accuracy is under 0.1% for more than 90% of the performance test cases. The easy implementation of this method and encouraging test results indicate its potential for real-life applications. | spa |
dc.format.extent | 10 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Electric Power Systems Research - vol. 196 (2021) | spa |
dc.title | High impedance fault modeling and location for transmission line | spa |
dcterms.bibliographicCitation | PC37.250/D1.30, Nov 2019 - PC37.250/D1.30, Nov 2019 - IEEE Approved Draft Guide for Engineering, Implementation, and Management of System Integrity Protection Schemes - IEEE Standard n.d. | spa |
dcterms.bibliographicCitation | P Anderson Analysis of Faulted Power Systems Institute of Electrical and Electronics, Inc, Iowa (1995) | spa |
dcterms.bibliographicCitation | D. Hou, S. Carolina, D. Hou, S.E. Laboratories Detection of high-impedance faults in power distribution systems Power Syst. Conf. Adv. Metering, Prot. Control. Commun. Distrib. Resour., 2007 (2007), pp. 1-11 | spa |
dcterms.bibliographicCitation | M.M. Saha, J. Izykowski, E. Rosolowski Fault Location on Power Networks Springer, London (2010) | spa |
dcterms.bibliographicCitation | Ramamurthy T.A., Swarup K.S. High Impedance Fault detection using DWT for transmission and distribution networks. 2016 IEEE 6th Int Conf Power Syst 2016:1–6. 10.1109/ICPES.2016.7584004. | spa |
dcterms.bibliographicCitation | A.E. Emanuel, D. Cyganski, J.A. Orr, S. Shiller, E.M. Gulachenski High impedance fault arcing on sandy soil in 15 kV distribution feeders: contributions to the evaluation of the low frequency spectrum IEEE Trans Power Deliv, 5 (1990), pp. 676-686, 10.1109/61.53070 | spa |
dcterms.bibliographicCitation | D.I. Jerrings, J.R. Linders Ground resistance-revisited IEEE Trans Power Deliv, 4 (1989), pp. 949-956, 10.1109/MPER.1989.4310592 | spa |
dcterms.bibliographicCitation | M. Aucoin Status of high impedance fault detection IEEE Trans Power Appar Syst, PAS-104 (1985), pp. 637-644, 10.1109/TPAS.1985.318999 | spa |
dcterms.bibliographicCitation | M. Jannati, L. Eslami Precise modeling of high impedance faults in power distribution system in EMTPWorks software J Electr Eng, 13 (2013), pp. 283-290 | spa |
dcterms.bibliographicCitation | S.R. Nam, J.K. Park, Y.C. Kang, T.H. Kim A modeling method of a high impedance fault in a distribution system using two series time-varying resistances in EMTP Power Eng. Soc. Summer Meet. 2001. Conf. Proc., 2 (2001), pp. 1175-1180, 10.1109/PESS.2001.970231 | spa |
dcterms.bibliographicCitation | W. Santos, B. Sousa, N. Dantas, F. Bezzerra, M. Cerqueira High impedance faults: from field tests to modeling J Control Autom Electr Syst, 24 (2013), pp. 885-896 | spa |
dcterms.bibliographicCitation | R.G. Ferraz Localização De Faltas De Alta impedância: Formulação Baseada Na Impedância Aparente e Nométodo De Mínimos Quadrados Universidade Federal do Rio Grande do Sul (2014) | spa |
dcterms.bibliographicCitation | R.A. de Aguiar, A.L. Dalcastagnê, H.H. Zürn, R. Seara Impedance-based fault location methods: sensitivity analysis and performance improvement Electr Power Syst Res, 155 (2018), pp. 236-245, 10.1016/j.epsr.2017.10.021 | spa |
dcterms.bibliographicCitation | Akmaz D., Mamiş M.S., Arkan M., Tağluk M.E. Transmission line fault location using traveling wave frequencies and extreme learning machine. Electr. Power Syst. Res. 2018. 10.1016/j.epsr.2017.09.019. | spa |
dcterms.bibliographicCitation | S.G. Di Santo, C.E.D.M. Pereira Fault location method applied to transmission lines of general configuration Int. J. Electr. Power Energy Syst., 69 (2015), pp. 287-294, 10.1016/j.ijepes.2015.01.014 | spa |
dcterms.bibliographicCitation | T. NengLing, C. JiaJia Wavelet-based approach for high impedance fault detection of high voltage transmission line Eur. Trans. Electr. Power, 18 (2008), pp. 79-92, 10.1002/etep | spa |
dcterms.bibliographicCitation | J. Doria-García, C. Orozco-Henao, L.U. Orozco Iurinic, J.D Pulgarín-rivera High impedance fault location : generalized extension for ground faults Electr. Power Energy Syst., 114 (2020), Article 105387, 10.1016/j.ijepes.2019.105387 | spa |
dcterms.bibliographicCitation | H. Livani, C Yaman Evrenosoglu A machine learning and Wavelet-Based fault location method for hybrid transmission lines IEEE Trans. Smart Grid., 5 (2014), pp. 51-59, 10.1109/TSG.2013.2260421 | spa |
dcterms.bibliographicCitation | D.T.W. Chan, X. Yibin A novel technique for high impedance fault identification IEEE Trans. Power Deliv., 13 (1998), pp. 738-744, 10.1109/61.686968 | spa |
dcterms.bibliographicCitation | M. Chen, J. Zhai, Z. Lang, J. Liao, Z. Fan High Impedance Fault Location in Transmission Line Using Nonlinear Frequency Analysis Life Syst. Model Intell. Comput., 6328 (2010), pp. 104-111 | spa |
dcterms.bibliographicCitation | L.U. Iurinic, A.R. Herrera-Orozco, R.G. Ferraz, A.S. Bretas Distribution systems high-impedance fault location: a parameter estimation approach IEEE Trans. Power Deliv., 31 (2016), pp. 1806-1814, 10.1109/TPWRD.2015.2507541 | spa |
dcterms.bibliographicCitation | M. Ghazizadeh-Ahsaee Accurate NHIF Locator Utilizing Two-End Unsynchronized Measurements, 28 (2013), pp. 419-426 | spa |
dcterms.bibliographicCitation | C.J. Lee, J.B. Park, J.R. Shin, Z.M. Radojevié A new two-terminal numerical algorithm for fault location, distance protection, and arcing fault recognition IEEE Trans. Power Syst., 21 (2006), pp. 1460-1462, 10.1109/TPWRS.2006.876646 | spa |
dcterms.bibliographicCitation | R.G. Ferraz, L.U. Iurinic, A.D. Filomena, D.S. Gazzana, A.S. Bretas Arc fault location: a nonlinear time varying fault model and frequency domain parameter estimation approach Int. J. Electr. Power Energy Syst., 80 (2016), pp. 347-355, 10.1016/j.ijepes.2016.02.003 | spa |
dcterms.bibliographicCitation | H. Saadat Power System Analysis.Pdf McGraw-Hill, New York (1999) | spa |
dcterms.bibliographicCitation | S. Gratton, A.S. Lawless, N.K. Nichols Approximate Gauss-newton methods for nonlinear least squares problems SIAM J Optim, 18 (2007), pp. 106-132, 10.1137/050624935 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | 10.1016/j.epsr.2021.107202 | |
dc.subject.keywords | Distributed parameters | spa |
dc.subject.keywords | Electrical power systems | spa |
dc.subject.keywords | Fault location | spa |
dc.subject.keywords | High impedance fault | spa |
dc.subject.keywords | Nonlinear arcing fault | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.