Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorGarcés, Alejandro
dc.contributor.authorSerra, Federico
dc.contributor.authorHernandez, Jesus C.
dc.date.accessioned2022-01-25T12:53:02Z
dc.date.available2022-01-25T12:53:02Z
dc.date.issued2021-04-30
dc.date.submitted2022-01-24
dc.identifier.citationOscar Danilo Montoya, Walter Gil-González, Alejandro Garces, Federico Serra, Jesus C. Hernández, Stabilization of MT-HVDC grids via passivity-based control and convex optimization, Electric Power Systems Research, Volume 196, 2021, 107273, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2021.107273.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10404
dc.description.abstractThis paper presents a model for stabilizing multi-terminal high voltage direct-current (MT-HVDC) networks with constant power terminals (CPTs) interfaced with power electronic converters. A hierarchical structure of hierarchical control is developed, which guarantees a stable operation under load variations. This structure includes a port-Hamiltonian formulation representing the network dynamics and a passivity-based control (PBC) for the primary control. This control guarantees stability according to Lyapunov’s theory. Next, a convex optimal power flow formulation based on semidefinite programming (SDP) defines the control’s set point in the secondary/ tertiary control. The proposed stabilization scheme is general for both point-to-point HVDC systems and MTHVDC grids. Simulation results in MATLAB/Simulink demonstrate the stability of the primary control and the optimal performance of the secondary/tertiary control, considering three simulation scenarios on a reduced version of the CIGRE MT-HVDC test system: (i) variation of generation and load, (ii) short-circuit events with different fault resistances and (iii) grid topology variation. These simulations prove the applicability and efficiency of the proposed approach.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectric Power Systems Research - vol. 196 (2021)spa
dc.titleStabilization of MT-HVDC grids via passivity-based control and convex optimizationspa
dcterms.bibliographicCitationO.D. Montoya, W. Gil-González, L. Grisales-Noreña, C. Orozco-Henao, F. Serra Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models Energies, 12 (23) (2019), p. 4494spa
dcterms.bibliographicCitationJ. Li, F. Liu, Z. Wang, S. Low, S. Mei Optimal power flow in stand-alone DC microgrids IEEE Trans. Power Syst. (2018), p. 1, 10.1109/TPWRS.2018.2801280spa
dcterms.bibliographicCitationA. Garces On convergence of newtons method in power flow study for DC microgrids IEEE Trans. Power Syst. (2018), p. 1, 10.1109/TPWRS.2018.2820430spa
dcterms.bibliographicCitationP. Magne, B. Nahid-Mobarakeh, S. Pierfederici General active global stabilization of multiloads DC-Power networks IEEE Trans. Power Electron., 27 (4) (2012), pp. 1788-1798, 10.1109/TPEL.2011.2168426spa
dcterms.bibliographicCitationA. Elnady, A. Adam Decoupled state-Feedback based control scheme for the distributed generation system Electric Power Components and Systems, 46 (5) (2018), pp. 494-510, 10.1080/15325008.2018.1453564spa
dcterms.bibliographicCitationO.D. Montoya, W. Gil-González, A. Garces Optimal power flow on DC microgrids: A Quadratic convex approximation IEEE Trans. Circuits Syst. II Exp. Briefs (2018), p. 1, 10.1109/TCSII.2018.2871432spa
dcterms.bibliographicCitationO.D. Montoya, W. Gil-González, L.F. Grisales-Noreña Optimal power dispatch of DGs in DC power grids: a hybrid gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem WSEAS Transactions on Power Systems, 13 (33) (2018), pp. 335-346spa
dcterms.bibliographicCitationE. Benedito, D. del Puerto-Flores, A. Dória-Cerezo, J.M. Scherpen Port-Hamiltonian based optimal power flow algorithm for multi-terminal DC networks Control Eng. Pract., 83 (2019), pp. 141-150, 10.1016/j.conengprac.2018.10.018spa
dcterms.bibliographicCitationD. Murillo-Yarce, A. Garcés-Ruiz, A. Escobar-Mejía Passivity-Based control for DC-Microgrids with constant power terminals in island mode operation Revista Facultad de Ingeniería (86) (2018), pp. 32-39spa
dcterms.bibliographicCitationE. Benedito, D. del Puerto-Flores, A. Dória-Cerezo, J.M. Scherpen Optimal power flow for resistive DC networks: a port-Hamiltonian approach IFAC-PapersOnLine, 50 (1) (2017), pp. 25-30, 10.1016/j.ifacol.2017.08.005spa
dcterms.bibliographicCitationC. De Persis, E.R. Weitenberg, F. Dörfler A power consensus algorithm for DC microgrids Automatica, 89 (2018), pp. 364-375, 10.1016/j.automatica.2017.12.026spa
dcterms.bibliographicCitationM. Tucci, L. Meng, J.M. Guerrero, G. Ferrari-Trecate Stable current sharing and voltage balancing in DC microgrids: a consensus-based secondary control layer Automatica, 95 (2018), pp. 1-13, 10.1016/j.automatica.2018.04.017spa
dcterms.bibliographicCitationM. Tucci, L. Meng, J.M. Guerrero, G. Ferrari-Trecate Plug-and-play control and consensus algorithms for current sharing in DC microgrids IFAC-PapersOnLine, 50 (1) (2017), pp. 12440-12445, 10.1016/j.ifacol.2017.08.1918spa
dcterms.bibliographicCitationZ. Shuai, J. Fang, F. Ning, Z.J. Shen Hierarchical structure and bus voltage control of DC microgrid Renew. Sustain. Energy Rev., 82 (2018), pp. 3670-3682, 10.1016/j.rser.2017.10.096spa
dcterms.bibliographicCitationJ. Lai, X. Lu, W. Yao, J. Wen, S. Cheng Robust distributed cooperative control for DC mircogrids with time delays, noise disturbances, and switching topologies J. Franklin Inst., 354 (18) (2017), pp. 8312-8332, 10.1016/j.jfranklin.2017.10.025spa
dcterms.bibliographicCitationC. Dong, F. Guo, H. Jia, Y. Xu, X. Li, P. Wang DC Microgrid stability analysis considering time delay in the distributed control Energy Procedia, 142 (2017), pp. 2126-2131, 10.1016/j.egypro.2017.12.616spa
dcterms.bibliographicCitationN. Vafamand, M.H. Khooban, T. Dragičević, F. Blaabjerg Networked fuzzy predictive control of power buffers for dynamic stabilization of DC microgrids IEEE Trans. Ind. Electron., 66 (2) (2019), pp. 1356-1362, 10.1109/TIE.2018.2826485spa
dcterms.bibliographicCitationM.A. Kardan, M.H. Asemani, A. Khayatian, N. Vafamand, M.H. Khooban, T. Dragičević, F. Blaabjerg Improved stabilization of nonlinear DC microgrids: cubature kalman filter approach IEEE Trans. Ind. Appl., 54 (5) (2018), pp. 5104-5112, 10.1109/TIA.2018.2848959spa
dcterms.bibliographicCitationL.F. Grisales-Noreña, O.D. Garzón-Rivera, J.A. Ocampo-Toro, C.A. Ramos-Paja, M.A. Rodriguez-Cabal Metaheuristic optimization methods for optimal power flow analysis in DC distribution networks Transactions on Energy Systems and Engineering Applications, 1 (1) (2020), pp. 13-31, 10.32397/tesea.vol1.n1.2spa
dcterms.bibliographicCitationO.D. Montoya Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model IEEE Trans. Circuits Syst. II Exp. Briefs, 66 (4) (2018), pp. 642-646, 10.1109/TCSII.2018.2866447spa
dcterms.bibliographicCitationW. Gil-González, O.D. Montoya, E. Holguín, A. Garces, L.F. Grisales-Noreña Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model J. Energy Storage, 21 (2019), pp. 1-8, 10.1016/j.est.2018.10.025spa
dcterms.bibliographicCitationA. Garces, O.D. Montoya, R. Torres Optimal power flow in multiterminal HVDC systems considering DC/DC converters 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE) (2016), pp. 1212-1217, 10.1109/ISIE.2016.7745067spa
dcterms.bibliographicCitationO.D. Montoya, L. Grisales-Noreña, D. González-Montoya, C. Ramos-Paja, A. Garces Linear power flow formulation for low-voltage DC power grids Electr. Power Syst. Res., 163 (2018), pp. 375-381, 10.1016/j.epsr.2018.07.003spa
dcterms.bibliographicCitationJ.W. Simpson-Porco, F. Dorfler, F. Bullo On resistive networks of constant-Power devices IEEE Trans. Circuits Syst. II Exp. Briefs, 62 (8) (2015), pp. 811-815, 10.1109/TCSII.2015.2433537spa
dcterms.bibliographicCitationC. Gavriluta, I. Candela, C. Citro, A. Luna, P. Rodriguez Design considerations for primary control in multi-terminal VSC-HVDC grids Electr. Power Syst. Res., 122 (2015), pp. 33-41, 10.1016/j.epsr.2014.12.020spa
dcterms.bibliographicCitationA. Garces Uniqueness of the power flow solutions in low voltage direct current grids Electr. Power Syst. Res., 151 (Supplement C) (2017), pp. 149-153, 10.1016/j.epsr.2017.05.031spa
dcterms.bibliographicCitationR. Cisneros, F. Mancilla-David, R. Ortega Passivity-Based control of a grid-Connected small-Scale windmill with limited control authority IEEE J. Emerg. Sel. Top. Power Electron., 1 (4) (2013), pp. 247-259, 10.1109/JESTPE.2013.2285376spa
dcterms.bibliographicCitationS.P. Nageshrao, G.A.D. Lopes, D. Jeltsema, R. Babuska Port-Hamiltonian systems in adaptive and learning control: A Survey IEEE Trans. Autom. Control, 61 (5) (2016), pp. 1223-1238, 10.1109/TAC.2015.2458491spa
dcterms.bibliographicCitationW. Gil-González, A. Garces, A. Escobar Passivity-based control and stability analysis for hydro-turbine governing systems Appl. Math. Modell., 68 (2019), pp. 471-486, 10.1016/j.apm.2018.11.045spa
dcterms.bibliographicCitationO.D. Montoya, W. Gil-González, F.M. Serra PBC Approach for SMES devices in electric distribution networks IEEE Trans. Circuits Syst. II Exp. Briefs (2018), pp. 1-6, 10.1109/TCSII.2018.2805774spa
dcterms.bibliographicCitationF.M. Serra, C.H.D. Angelo IDA-PBC Controller design for grid connected front end converters under non-ideal grid conditions Electr. Power Syst. Res., 142 (2017), pp. 12-19, 10.1016/j.epsr.2016.08.041spa
dcterms.bibliographicCitationA.M. Jubril, A.O. Adediji, O.A. Olaniyan Solving the combined heat and power dispatch problem: A Semi-definite programming approach Electric Power Components and Systems, 40 (12) (2012), pp. 1362-1376, 10.1080/15325008.2012.694972spa
dcterms.bibliographicCitationA.M. Jubril, A.O. Adediji Semi-definite programming approach to stochastic combined heat and power environmental/economic dispatch problem Electric Power Components and Systems, 43 (18) (2015), pp. 2039-2049, 10.1080/15325008.2015.1075082spa
dcterms.bibliographicCitationW. Gil-González, O.D. Montoya, E. Holguín, A. Garces, L.F. Grisales-Noreña Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model Journal of Energy Storage, 21 (2019), pp. 1-8spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.epsr.2021.107273.
dc.subject.keywordsConvex optimizationspa
dc.subject.keywordsDirect-current networksspa
dc.subject.keywordsPassivity-based controlspa
dc.subject.keywordsHierarchical controlspa
dc.subject.keywordsPort-Hamiltonian formulationspa
dc.subject.keywordsStabilization of electrical networksspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.