Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez-Gil, John Fernando
dc.contributor.authorMoyano-García, Nicolas Alejandro
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorAlarcon-Villamil, Jorge Alexander
dc.date.accessioned2022-01-24T21:21:00Z
dc.date.available2022-01-24T21:21:00Z
dc.date.issued2021-07-18
dc.date.submitted2022-01-24
dc.identifier.citationMartínez-Gil, J.F.; Moyano-Garcia, N.A.; Montoya, O.D.; Alarcon-Villamil, J.A. Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Computation 2021, 9, 80. https://doi.org/10.3390/computation9070080spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10401
dc.description.abstractIn this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear programming (MINLP) structure is used. As an objective function, minimization of the investment costs in conductors together with the technical losses of the network for a study period of one year is considered. Additionally, the model will be implemented in balanced and unbalanced test systems and with variations in the connection of their loads, i.e., ∆− and Y−connections. To evaluate the costs of the energy losses, a classical backward/forward three-phase power-flow method is implemented. Two test systems used in the specialized literature were employed, which comprise 8 and 27 nodes with radial structures in medium voltage levels. All computational implementations were developed in the MATLAB programming environment, and all results were evaluated in DigSILENT software to verify the effectiveness and the proposed three-phase unbalanced powerflow method. Comparative analyses with classical and Chu & Beasley genetic algorithms, tabu search algorithm, and exact MINLP approaches demonstrate the efficiency of the proposed optimization approach regarding the final value of the objective functionspa
dc.format.extent32 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceComputation - vol. 9 n° 7 2021spa
dc.titleOptimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithmspa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. doi:10.3390/app11052175.spa
dcterms.bibliographicCitationFatima, S.; Püvi, V.; Arshad, A.; Pourakbari-Kasmaei, M.; Lehtonen, M. Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks. Energies 2021, 14, 2405. doi:10.3390/en14092405spa
dcterms.bibliographicCitationSorrentino, E.; Gupta, N.G. Summary of useful concepts about the coordination of directional overcurrent protections. CSEE J. Power Energy Syst. 2019. doi:10.17775/cseejpes.2018.01220spa
dcterms.bibliographicCitationPaz, M.C.R.; Ferraz, R.G.; Bretas, A.S.; Leborgne, R.C. System unbalance and fault impedance effect on faulted distribution networks. Comput. Math. Appl. 2010, 60, 1105–1114. doi:10.1016/j.camwa.2010.03.067.spa
dcterms.bibliographicCitationCortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282. doi:10.3390/en14051282.spa
dcterms.bibliographicCitationLavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–180. doi:10.1109/tpwrs.2011.2161349.spa
dcterms.bibliographicCitationMontoya., O.D.; Grajales, A.; Hincapié, R.A.; Granada, M. A new approach to solve the distribution system planning problem considering automatic reclosers. Ingeniare. Revista Chilena de Ingeniería 2017, 25, 415–429. doi:10.4067/s0718-33052017000300415.spa
dcterms.bibliographicCitationWang, Z.; Liu, H.; Yu, D.; Wang, X.; Song, H. A practical approach to the conductor size selection in planning radial distribution systems. IEEE Trans. Power Deliv. 2000, 15, 350–354. doi:10.1109/61.847272spa
dcterms.bibliographicCitationZhao, Z.; Mutale, J. Optimal Conductor Size Selection in Distribution Networks with High Penetration of Distributed Generation Using Adaptive Genetic Algorithm. Energies 2019, 12, 2065. doi:10.3390/en12112065.spa
dcterms.bibliographicCitationMontoya, O.; Grajales, A.; Hincapié, R. Optimal selection of conductors in distribution systems using tabu search algorithm. Ingeniare. Revista Chilena de Ingeniería 2018, 26, 283–295. doi:10.4067/s0718-33052018000200283.spa
dcterms.bibliographicCitationIsmael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y. Optimal selection of conductors in Egyptian radial distribution systems using sine-cosine optimization algorithm. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Hibbingum, Egypt, 19–21 December 2017; IEEE: Piscataway, NJ, USA, 2017. doi:10.1109/mepcon.2017.8301170.spa
dcterms.bibliographicCitationJoshi, D.; Burada, S.; Mistry, K.D. Distribution system planning with optimal conductor selection. In Proceedings of the 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 26–27 October 2017, IEEE: Piscataway, NJ, USA, 2017. doi:10.1109/rdcape.2017.8358279.spa
dcterms.bibliographicCitationIsmael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y.; Zobaa, A.F. Practical Considerations for Optimal Conductor Reinforcement and Hosting Capacity Enhancement in Radial Distribution Systems. IEEE Access 2018, 6, 27268–27277. doi:10.1109/access.2018.2835165.spa
dcterms.bibliographicCitationMandal, S.; Pahwa, A. Optimal selection of conductors for distribution feeders. IEEE Trans. Power Syst. 2002, 17, 192–197. doi:10.1109/59.982213.spa
dcterms.bibliographicCitationFalaghi, H.; Singh, C. Optimal Conductor Size Selection in Distribution Systems with Wind Power Generation. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 25–51. doi:10.1007/978-3-642-13250-6_2.spa
dcterms.bibliographicCitationLegha, M.; Javaheri, H.; Legha, M. Optimal Conductor Selection in Radial Distribution Systems for Productivity Improvement Using Genetic Algorithm. Iraqi J. Electr. Electron. Eng. 2013, 9, 29–35. doi:10.37917/ijeee.9.1.3spa
dcterms.bibliographicCitationRao, R.S.; Satish, K.; Narasimham, S.V.L. Optimal Conductor Size Selection in Distribution Systems Using the Harmony Search Algorithm with a Differential Operator. Electr. Power Compon. Syst. 2011, 40, 41–56. doi:10.1080/15325008.2011.621922.spa
dcterms.bibliographicCitationLopez, L.; Hincapié, R.A.; Gallego, R.A. Planeamiento multi-objetivo de sistemas de distribución usando un algoritmo evolutivo NSGA-II. Revista Escuela de Ingeniería de Antioquía 2011, 15, 141–151.spa
dcterms.bibliographicCitationKhalil, T.M.; Gorpinich, A.V. Optimal conductor selection and capacitor placement for loss reduction of radial distribution systems by selective particle swarm optimization. In Proceedings of the 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 27–29 November 2012; IEEE: Piscataway, NJ, USA 2012. doi:10.1109/icces.2012.6408516.spa
dcterms.bibliographicCitationLegha, M.M.; Noormohamadi, H.; Barkhori, A. Optimal conductor selection in radial distribution using bacterial foraging algorithm and comparison with ICA method WALIA J. 2015. 31, 37–43.spa
dcterms.bibliographicCitationAbdelaziz, A.Y.; Fathy, A. A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Eng. Sci. Technol. Int. J. 2017, 20, 391–402. doi:10.1016/j.jestch.2017.02.004spa
dcterms.bibliographicCitationAbdelaziz, A.Y.; Fathy, A. A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Eng. Sci. Technol. Int. J. 2017, 20, 391–402. doi:10.1016/j.jestch.2017.02.004spa
dcterms.bibliographicCitationHassen, S.Z.S.; Jahmeerbacus, M.I. Customer Loss Allocation Reduction Using Optimal Conductor Selection in Electrical Distribution System. In Emerging Trends in Electrical, Electronic and Communications Engineering; Springer: Singapore, 2017; Volume 416, pp. 372–379. doi:10.1007/978-3-319-52171-8.spa
dcterms.bibliographicCitationMontoya, O.D.; Garces, A.; Castro, C.A. Optimal Conductor Size Selection in Radial Distribution Networks Using a MixedInteger Non-Linear Programming Formulation. IEEE Latin Am. Trans. 2018, 16, 2213–2220. doi:10.1109/tla.2018.8528237spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach. Electr. Power Syst. Res. 2021, 194, 107072. doi:10.1016/j.epsr.2021.107072.spa
dcterms.bibliographicCitationIsmael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y. Optimal conductor selection in radial distribution systems using whale optimization algorithm. J. Eng. Sci. Technol. 2017, 14, 87–107spa
dcterms.bibliographicCitationKumari, M.; Singh, V.R.; Ranjan, R. Optimal selection of conductor in RDS considering weather condition. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018, New Delhi, India, 28–29 September 2018; pp. 647–651. doi:10.1109/GUCON.2018.8675051.spa
dcterms.bibliographicCitationMohanty, S.; Kasturi, K.; Nayak, M.R. Application of ER-WCA to Determine Conductor Size for Performance Improvement in Distribution System. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021, pp. 1–5. doi:10.1109/ICAECT49130.2021.9392495.spa
dcterms.bibliographicCitationPaz-Rodríguez, A.; Castro-Ordoñez, J.F.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm. Appl. Sci. 2021, 11, 4418. doi:10.3390/app11104418.spa
dcterms.bibliographicCitationDogan, B.; Yuksel, A. Analog filter group delay optimization using the Vortex Search algorithm. In Proceedings of the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015. doi:10.1109/siu.2015.7129815spa
dcterms.bibliographicCitationSerna-Suárez, I.D. A Convex Approximation for Optimal DER Scheduling on Unbal-anced Power Distribution Networks. DYNA 2019, 86, 281–291. doi:10.15446/dyna.v86n208.72886spa
dcterms.bibliographicCitationWang, C.; Liu, P.; Zhang, T.; Sun, J. The Adaptive Vortex Search Algorithm of Optimal Path Planning for Forest Fire Rescue UAV. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2018, Chongqing, China, 12–14 October 2018; pp. 400–403. doi:10.1109/IAEAC.2018.8577733spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-Gonzalez, W.; Grisales-Norena, L.F. Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks with CPLs. IEEE Trans. Circ. Syst. II Express Briefs 2020, 67, 1439–1443. doi:10.1109/TCSII.2019.2938530spa
dcterms.bibliographicCitationShen, T.; Li, Y.; Xiang, J. A graph-based power flow method for balanced distribution systems. Energies 2018, 11, 511. doi:10.3390/en11030511spa
dcterms.bibliographicCitationCastilho Neto, J.; Cossi, A.M. Alocação de Cabos em Redes de Distribuição de Energia Elétrica de Média Tensão (MT) Utilizando Algoritmo Chu-Beasley. In Simpósio Brasileiro de Sistemas Eletricos (SBSE). Foz do Iguacu, Brasil, 22–25 April. 2014; 1–6.spa
dcterms.bibliographicCitationSoroudi, A. Multi-Period Optimal Power Flow. In Alireza Soroudi Power System Optimization Modeling in GAMS; Springer: Singapore, 2019; Chapter 6, pp. 2017–2020.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/computation9070080
dc.subject.keywordsConductor selectionspa
dc.subject.keywordsMathematical optimizationspa
dc.subject.keywordsDistribution systemsspa
dc.subject.keywordsThree-phasespa
dc.subject.keywordsPower flowspa
dc.subject.keywordsEnergy lossesspa
dc.subject.keywordsVortex search algorithmspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.