Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorHincapié-Isaza, Ricardo Alberto
dc.contributor.authorGranada Echeverri, Mauricio
dc.contributor.authorPerea-Moreno, Alberto-Jesus
dc.date.accessioned2022-01-24T21:14:18Z
dc.date.available2022-01-24T21:14:18Z
dc.date.issued2021-08-11
dc.date.submitted2022-01-24
dc.identifier.citationGrisales-Noreña, L.F.; Montoya, O.D.; Hincapié-Isaza, R.A.; Granada Echeverri, M; Perea-Moreno, A.-J. Optimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSA. Mathematics 2021, 9, 1913. https://doi.org/0.3390/math9161913spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10396
dc.description.abstractIn this paper, we propose a master–slave methodology to address the problem of optimal integration (location and sizing) of Distributed Generators (DGs) in Direct Current (DC) networks. This proposed methodology employs a parallel version of the Population-Based Incremental Learning (PPBIL) optimization method in the master stage to solve the location problem and the Vortex Search Algorithm (VSA) in the slave stage to solve the sizing problem. In addition, it uses the reduction of power losses as the objective function, considering all the constraints associated with the technical conditions specific to DGs and DC networks. To validate its effectiveness and robustness, we use as comparison methods, different solution methodologies that have been reported in the specialized literature, as well as two test systems (the 21 and 69-bus test systems). All simulations were performed in MATLAB. According to the results, the proposed hybrid (PPBIL–VSA) methodology provides the best trade-off between quality of the solution and processing times and exhibits an adequate repeatability every time it is executed.spa
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMathematics - vol. 9 n° 6 2021spa
dc.titleOptimal Location and Sizing of DGs in DC Networks Using a Hybrid Methodology Based on the PPBIL Algorithm and the VSAspa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 2018, 11, 1018.spa
dcterms.bibliographicCitationHassan, A.S.; Othman, E.A.; Bendary, F.M.; Ebrahim, M.A. Optimal integration of distributed generation resources in active distribution networks for techno-economic benefits. Energy Rep. 2020, 6, 3462–3471.spa
dcterms.bibliographicCitationMishra, R.K.; Swarup, K.S. Adaptive Weight-Based Self Reconfiguration of Smart Distribution Network With Intelligent Agents. IEEE Trans. Emerg. Top. Comput. Intell. 2018, 2, 464–472.spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm. Energies 2020, 13, 4914.spa
dcterms.bibliographicCitationMontoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L.; Gil-González, W.; Orozco-Henao, C. Genetic-Convex Model for Dynamic Reactive Power Compensation in Distribution Networks Using D-STATCOMs. Appl. Sci. 2021, 11, 3353.spa
dcterms.bibliographicCitationNunez Forestieri, J.; Farasat, M. Integrative sizing/real-time energy management of a hybrid supercapacitor/undersea energy storage system for grid integration of wave energy conversion systems. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3798–3810.spa
dcterms.bibliographicCitationHashimoto, J.; Ustun, T.S.; Suzuki, M.; Sugahara, S.; Hasegawa, M.; Otani, K. Advanced Grid Integration Test Platform for Increased Distributed Renewable Energy Penetration in Smart Grids. IEEE Access 2021, 9, 34040–34053.spa
dcterms.bibliographicCitationAbdmouleh, Z.; Gastli, A.; Ben-Brahim, L.; Haouari, M.; Al-Emadi, N.A. Review of optimization techniques applied for the integration of distributed generation from renewable energy sources. Renew. Energy 2017, 113, 266–280.spa
dcterms.bibliographicCitationEhsan, A.; Yang, Q. Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques. Appl. Energy 2018, 210, 44–59.spa
dcterms.bibliographicCitationNoreña, L.F.G.; Cuestas, B.J.R.; Ramirez, F.E.J. Ubicación y dimensionamiento de generación distribuida: Una revisión. Cienc. E Ing. Neogranadina 2017, 27, 157–176.spa
dcterms.bibliographicCitationBizuayehu, A.W.; de la Nieta, A.A.S.; Contreras, J.; Catalao, J.P. Impacts of stochastic wind power and storage participation on economic dispatch in distribution systems. IEEE Trans. Sustain. Energy 2016, 7, 1336–1345spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219.spa
dcterms.bibliographicCitationDragiˇcevi´c, T.; Lu, X.; Vasquez, J.C.; Guerrero, J.M. DC microgrids—Part II: A review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 2015, 31, 3528–3549.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach. Electr. Power Syst. Res. 2021, 194, 107072.spa
dcterms.bibliographicCitationRodriguez, P.; Rouzbehi, K. Multi-terminal DC grids: Challenges and prospects. J. Mod. Power Syst. Clean Energy 2017, 5, 515–523spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. A MIQP model for optimal location and sizing of dispatchable DGs in DC networks. Energy Syst. 2021, 12, 181–202.spa
dcterms.bibliographicCitationJi, H.; Wang, C.; Li, P.; Zhao, J.; Song, G.; Wu, J. Quantified flexibility evaluation of soft open points to improve distributed generator penetration in active distribution networks based on difference-of-convex programming. Appl. Energy 2018, 218, 338–348.spa
dcterms.bibliographicCitationWong, L.A.; Ramachandaramurthy, V.K.; Taylor, P.; Ekanayake, J.; Walker, S.L.; Padmanaban, S. Review on the optimal placement, sizing and control of an energy storage system in the distribution network. J. Energy Storage 2019, 21, 489–504.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A.; Hernandez-Escobedo, Q.; Perea-Moreno, A.J. Optimal Location and Sizing of Distributed Generators in DC Networks Using a Hybrid Method Based on Parallel PBIL and PSO. Electronics 2020, 9, 1808spa
dcterms.bibliographicCitationWang, P.; Wang, W.; Xu, D. Optimal sizing of distributed generations in dc microgrids with comprehensive consideration of system operation modes and operation targets. IEEE Access 2018, 6, 31129–31140.spa
dcterms.bibliographicCitationMontoya, O.; Gil-González, W.; Grisales-Noreña, L. Optimal Power Dispatch of Dgs in Dc Power Grids: A Hybrid Gauss-SeidelGenetic-Algorithm Methodology for Solving the OPF Problem; World Scientific and Engineering Academy and Society: Athens, Greece, 2018.spa
dcterms.bibliographicCitationGarzon-Rivera, O.; Ocampo, J.; Grisales-Norena, L.; Montoya, O.; Rojas-Montano, J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer. Stat. Optim. Inf. Comput. 2020, 8, 846–857.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid metaheuristic optimization methods for optimal location and sizing DGs in DC networks. In Workshop on Engineering Applications; Springer: Cham, Switzerland, 2019; pp. 214–225.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L. Vortex search algorithm for optimal power flow analysis in DC resistive networks with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1439–1443.spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power flow analysis in DC grids: Two alternative numerical methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W.J.; Perea-Moreno, A.J.; Perea-Moreno, M.A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics 2020, 9, 2062.spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Triangular matrix formulation for power flow analysis in radial DC resistive grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 1094–1098.spa
dcterms.bibliographicCitationMolina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C. A Mixed-Integer Conic Formulation for Optimal Placement and Dimensioning of DGs in DC Distribution Networks. Electronics 2021, 10, 176.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/0.3390/math9161913
dc.subject.keywordsDirect current gridsspa
dc.subject.keywordsDistributed generationspa
dc.subject.keywordsDirect current networksspa
dc.subject.keywordsMetaheuristic optimizationspa
dc.subject.keywordsParallel processing toolsspa
dc.subject.keywordsPower loss reductionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.