Mostrar el registro sencillo del ítem
Analysis of sub-atmospheric pressures during emptying of an Irregular pipeline without an air valve using a 2D CFD model
dc.contributor.author | Hurtado-Misal, Aris D. | |
dc.contributor.author | Hernández-Sanjuan, Daniela | |
dc.contributor.author | Coronado Hernández, Óscar Enrique | |
dc.contributor.author | Espinoza Román, Héctor Gabriel | |
dc.contributor.author | Fuertes Miquel, Vicente S. | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2022-01-17T21:03:51Z | |
dc.date.available | 2022-01-17T21:03:51Z | |
dc.date.issued | 2021-09-15 | |
dc.date.submitted | 2022-01-17 | |
dc.identifier.citation | Hurtado-Misal, A.D.; Hernández-Sanjuan, D.; Coronado-Hernández, O.E.; Espinoza-Román, H.; Fuertes-Miquel, V.S. Analysis of Sub-Atmospheric Pressures during Emptying of an Irregular Pipeline without an Air Valve Using a 2D CFD Model. Water 2021, 13, 2526. https://doi.org/ 10.3390/w13182526 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10389 | |
dc.description.abstract | Studying sub-atmospheric pressure patterns in emptying pipeline systems is crucial because these processes could cause collapses depending on the installation conditions (the underground pipe covering height, type, fill, and pipeline stiffness class). Pipeline studies have focused more on filling than on emptying processes. This study presents an analysis of the following variables: air pocket pressure, water velocity, and water column length during the emptying of an irregular pipeline without an air valve by two-dimensional computational fluid dynamics (2D CFD) model simulation using the software OpenFOAM. The mathematical model predicts the experimental values of the study variables. Water velocity vectors are also analysed within the experimental facility, assessing the sensitivity of the drain valve to different openings and changes in water column length during the hydraulic phenomenon. | spa |
dc.format.extent | 14 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Water 2021, 13, 2526 | spa |
dc.title | Analysis of sub-atmospheric pressures during emptying of an Irregular pipeline without an air valve using a 2D CFD model | spa |
dcterms.bibliographicCitation | Besharat, M.; Tarinejad, R.; Aalami, M.T.; Ramos, H.M. Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis. Water Resour. Manag. 2016, 30, 2687–2702 | spa |
dcterms.bibliographicCitation | Escarameia, M. Investigating hydraulic removal of air from water pipelines. Proc. Inst. Civ. Eng. Water Manag. 2007, 160, 25–34 | spa |
dcterms.bibliographicCitation | Ramezani, L.; Karney, B.; Malekpour, A. Encouraging Effective Air Management in Water Pipelines: A Critical Review. J. Water Resour. Plan. Manag. 2016, 142, 04016055 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Experimental and numerical analysis of a water emptying pipeline using different air valves. Water 2017, 9, 98 | spa |
dcterms.bibliographicCitation | Gabl, R.; Wippersberger, M.; Seibl, J.; Kröner, C.; Gems, B. Submerged Wall Instead of a Penstock Shutoff Valve—Alternative Protection as Part of a Refurbishment. Water 2021, 13, 2247 | spa |
dcterms.bibliographicCitation | Laanearu, J.; Annus, I.; Koppel, T.; Bergant, A.; Vuˇckovi´c, S.; Hou, Q.; Tijsseling, A.S.; Anderson, A.; van’t Westende, J.M.C. Emptying of Large-Scale Pipeline by Pressurized Air. J. Hydraul. Eng. 2012, 138, 1090–1100 | spa |
dcterms.bibliographicCitation | Tijsseling, A.S.; Hou, Q.; Bozkus, Z.; Laanearu, J. Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines. J. Press. Vessel Technol. Trans. ASME 2016, 138, 1–11 | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S.; Coronado-Hernández, Ó.E.; Mora-Melia, D.; Iglesias-Rey, P.L. Hydraulic Modeling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review. Urban Water J. 2019, 16, 299–311. | spa |
dcterms.bibliographicCitation | Laanearu, J.; Hou, Q.; Annus, I.; Tijsseling, A.S. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air. Proc. Est. Acad. Sci. 2015, 64, 8–16 | spa |
dcterms.bibliographicCitation | Karadži´c, U.; Strunjaš, F.; Bergant, A.; Mavriˇc, R.; Buckstein, S. Developments in Pipeline Filling and Emptying Experimentation in a Laboratory Pipeline Apparatus. In Proceedings of the 6th IAHR Meeting on WG Cavitation and Dynamic Problems, Ljubljana, Slovenia, 9–11 September 2015; pp. 273–280 | spa |
dcterms.bibliographicCitation | Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Besharat, M.; Ramos, H.M. Subatmospheric pressure in a water draining pipeline with an air pocket. Urban Water J. 2018, 15, 346–352. | spa |
dcterms.bibliographicCitation | Fuertes-Miquel, V.S.; Coronado-Hernández, O.E.; Iglesias-Rey, P.L.; Mora-Meliá, D. Transient phenomena during the emptying process of a single pipe with water–air interaction. J. Hydraul. Res. 2018, 57, 318–326 | spa |
dcterms.bibliographicCitation | Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Computational fluid dynamics for sub-atmospheric pressure analysis in pipe drainage. J. Hydraul. Res. 2019, 58, 553–565 | spa |
dcterms.bibliographicCitation | Martins, N.M.C.; Delgado, J.N.; Ramos, H.M.; Covas, D.I.C. Maximum transient pressures in a rapidly filling pipeline with entrapped air using a CFD model. J. Hydraul. Res. 2017, 55, 506–519 | spa |
dcterms.bibliographicCitation | Zhou, L.; Wang, H.; Karney, B.; Liu, D.; Wang, P.; Guo, S. Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline. J. Hydraul. Eng. 2018, 144, 04018045. | spa |
dcterms.bibliographicCitation | Besharat, M.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Viseu, M.T.; Ramos, H.M. Backflow air and pressure analysis in emptying a pipeline containing an entrapped air pocket. Urban Water J. 2018, 15, 769–779 | spa |
dcterms.bibliographicCitation | Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. 2007. Available online: http://ftp.demec.ufpr.br/disciplinas/TM702/Versteeg_Malalasekera_2ed.pdf (accessed on 10 September 2021) | spa |
dcterms.bibliographicCitation | Wang, L.; Wang, F.; Karney, B.; Malekpour, A. Numerical investigation of rapid filling in bypass pipelines. J. Hydraul. Res. 2017, 55, 647–656. | spa |
dcterms.bibliographicCitation | Hinze, J.O. Turbulnce. In McGraw-Hill Series in Mechanical Engineering; McGraw-Hill: New York, NY, USA, 1975 | spa |
dcterms.bibliographicCitation | Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. | spa |
dcterms.bibliographicCitation | Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 1299–1310 | spa |
dcterms.bibliographicCitation | Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA 1994, 32, 1598–1605 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/ 10.3390/w13182526 | |
dc.subject.keywords | OpenFOAM | spa |
dc.subject.keywords | CFD | spa |
dc.subject.keywords | Sub-atmospheric pressure | spa |
dc.subject.keywords | Emptying process | spa |
dc.subject.keywords | Air pocket | spa |
dc.subject.keywords | Irregular pipeline | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.