Show simple item record

dc.contributor.authorGil-González, Walter
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorRestrepo, Carlos
dc.contributor.authorHernández, Jesus C.
dc.identifier.citationGil-González, W.; Montoya, O.D.; Restrepo, C.; Hernández, J.C. Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach. Sensors 2021, 21, 6367.
dc.description.abstractThe problem of voltage regulation in unknown constant resistive loads is addressed in this paper from the nonlinear control point of view for second-order DC-DC converters. The converters’ topologies analyzed are: (i) buck converter, (ii) boost converter, (iii) buck-boost converter, and (iv) non-inverting buck-boost converter. The averaging modeling method is used to model these converters, representing all these converter topologies with a generalized port-Controlled Hamiltonian (PCH) representation. The PCH representation shows that the second-order DC-DC converters exhibit a general bilinear structure which permits to design of a passivity-based controller with PI actions that ensures the asymptotic stability in the sense of Lyapunov. A linear estimator based on an integral estimator that allows reducing the number of current sensors required in the control implementation stage is used to determine the value of the unknown resistive load. The main advantage of this load estimator is that it ensures exponential convergence to the estimated variable. Numerical simulations and experimental validations show that the PI passivity-based control allows voltage regulation with first-order behavior, while the classical PI controller produces oscillations in the controlled variable, significantly when the load variesspa
dc.format.extent15 páginas
dc.sourceSensors - vol. 21 n° 19spa
dc.titleSensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approachspa
dcterms.bibliographicCitationLund, P.D.; Byrne, J.; Haas, R.; Flynn, D. Advances in Energy Systems: The Large-Scale Renewable Energy Integration Challenge; John Wiley & Sons: Hoboken, NJ, USA, 2019spa
dcterms.bibliographicCitationGavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges. Int. J. Electr. Power Energy Syst. 2020, 123, 106299spa
dcterms.bibliographicCitationMontoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352spa
dcterms.bibliographicCitationSrinivasan, M.; Kwasinski, A. Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads. Int. J. Electr. Power Energy Syst. 2020, 122, 106207spa
dcterms.bibliographicCitationJin, C.; Wang, P.; Xiao, J.; Tang, Y.; Choo, F.H. Implementation of hierarchical control in DC microgrids. IEEE Trans. Ind. Electron. 2013, 61, 4032–
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Espinosa-Perez, G. Adaptive control for second-order DC–DC converters: PBC approach. In Modeling, Operation, and Analysis of DC Grids; Elsevier: Cambridge, MA, USA, 2021; pp. 289–
dcterms.bibliographicCitationModeling, Operation, and Analysis of DC Grids; Elsevier: Cambridge, MA, USA, 2021; pp. 289–310. 8. Singh, B.; Shrivastava, A. Buck converter-based power supply design for low power light emitting diode lamp lighting. IET Power Electron. 2014, 7, 946–956spa
dcterms.bibliographicCitationLeon-Masich, A.; Valderrama-Blavi, H.; Bosque-Moncusí, J.M.; Maixe-Altes, J.; Martínez-Salamero, L. Sliding-mode-control-based boost converter for high-voltage–low-power applications. IEEE Trans. Ind. Electron. 2014, 62, 229–237spa
dcterms.bibliographicCitationChen, X.; Pise, A.A.; Elmes, J.; Batarseh, I. Ultra-highly efficient low-power bidirectional cascaded buck-boost converter for portable PV-battery-devices applications. IEEE Trans. Ind. Appl. 2019, 55, 3989–4000spa
dcterms.bibliographicCitationSerna-Garcés, S.; Montoya, D.G.; Ramos-Paja, C. Control of a Charger/Discharger DC/DC Converter with Improved Disturbance Rejection for Bus Regulation. Energies 2018, 11, 594spa
dcterms.bibliographicCitationSerna-Garcés, S.; Montoya, D.G.; Ramos-Paja, C. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems. Energies 2016, 9, 245spa
dcterms.bibliographicCitationLin, X.; Liu, J.; Liu, F.; Liu, Z.; Gao, Y.; Sun, G. Fractional-Order Sliding Mode Approach of Buck Converters With Mismatched Disturbances. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3890–3900spa
dcterms.bibliographicCitationLiu, J.; Shen, X.; Alcaide, A.M.; Yin, Y.; Leon, J.I.; Vazquez, S.; Wu, L.; Franquelo, L.G. Sliding Mode Control of Grid-Connected NPC Converters Via High-Gain Observer. IEEE Trans. Ind. Electron. 2021, in
dcterms.bibliographicCitationLiu, J.; Laghrouche, S.; Wack, M. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. Int. J. Control 2014, 87, 1117–1130. [spa
dcterms.bibliographicCitationYin, Y.; Liu, J.; Wang, S.; Lin, H.; Vazquez, S.; Zeng, Q.; Franquelo, L.G.; Wu, L. Backstepping Control of a DC-DC Boost Converters Under Unknown Disturbances. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018spa
dcterms.bibliographicCitationRoy, T.K.; Mahmud, M.A.; Shen, W.; Haque, M.E.; Oo, A.M.T. Robust adaptive backstepping controller design for DC-DC buck converters with external disturbances. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016spa
dcterms.bibliographicCitationBhattacharyya, D.; Padhee, S.; Pati, K.C. Modeling of DC–DC Converter Using Exact Feedback Linearization Method: A Discussion. IETE J. Res. 2018, 65, 843–854spa
dcterms.bibliographicCitationCai, P.; Wu, X.; Sun, R.; Wu, Y. Exact feedback linearization of general four-level buck DC-DC converters. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017. [spa
dcterms.bibliographicCitationYin, Y.; Liu, J.; Marquez, A.; Lin, X.; Leon, J.I.; Vazquez, S.; Franquelo, L.G.; Wu, L. Advanced Control Strategies for DC–DC Buck Converters With Parametric Uncertainties via Experimental Evaluation. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 5257–5267spa
dcterms.bibliographicCitationMontoya, O.; Gil-Gonzalez, W.; Garces, A.; Serra, F.; Hernandez, J. PI-PBC Approach for Voltage Regulation in Cuk Converters ´ with Adaptive Load Estimation. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020spa
dcterms.bibliographicCitationRamirez, H.; Garzón, G.; Torres, C.; Navarrete, J.; Restrepo, C. LMI Control Design of a Non-Inverting Buck-Boost Converter: A Current Regulation Approach. TECCIENCIA 2017, 12, 79–85spa
dcterms.bibliographicCitationMagaldi, G.L.; Serra, F.M.; de Angelo, C.H.; Montoya, O.D.; Giral-Ramírez, D.A. Voltage Regulation of an Isolated DC Microgrid with a Constant Power Load: A Passivity-based Control Design. Electronics 2021, 10, 2085spa
dcterms.bibliographicCitationRodighiero, F.; Freato, S. Design and implementation of low-loss non-inverting buck-boost for lithium-ion batteries charging applications. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 11–14 September 2017spa
dcterms.bibliographicCitationGaboriault, M.; Notman, A. A high efficiency, non-inverting, buck-boost DC-DC converter. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 22–26 February 2004spa
dcterms.bibliographicCitationKolsi, S.; Samet, H.; Amar, M.B. Design Analysis of DC-DC Converters Connected to a Photovoltaic Generator and Controlled by MPPT for Optimal Energy Transfer throughout a Clear Day. J. Power Energy Eng. 2014, 02, 27–34spa
dcterms.bibliographicCitationRadhika, S.; Margaret, V. A Review on DC-DC Converters with Photovoltaic System in DC Micro Grid. J. Phys. Conf. Ser. 2021, 1804, 012155spa
dcterms.bibliographicCitationMazhari, I.; Parkhideh, B. DC-bus voltage regulation for DC distribution system with controllable DC load. In Proceedings of the 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Florianopolis, Brazil, 17–20 April 2017spa
dcterms.bibliographicCitationAryani, D.R.; Song, H. Voltage Regulation in a Stand-Alone DC Microgrid. IFAC-PapersOnLine 2019, 52, 36–39spa
dcterms.bibliographicCitationOrtega, R.; Jiang, Z.; Hill, D. Passivity-based control of nonlinear systems: A tutorial. In Proceedings of the 1997 American Control Conference, Albuquerque, NM, USA, 6 June 1997spa
dcterms.bibliographicCitationChen, W.; Saif, M. Passivity and Passivity-based controller design of a class of switched control systems. IFAC Proc. Vol. 2005, 38, 676–
dcterms.bibliographicCitationSerra, F.M.; Angelo, C.H.D. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electr. Power Syst. Res. 2017, 142, 12–19spa
dcterms.bibliographicCitationSerra, F.M.; Angelo, C.H.D.; Forchetti, D.G. Interconnection and damping assignment control of a three-phase front end converter. Int. J. Electr. Power Energy Syst. 2014, 60, 317–324spa
dcterms.bibliographicCitationCisneros, R.; Ortega, R.; Pirro, M.; Ippoliti, G.; Bergna, G.; Cabrera, M.M. Global tracking passivity-based PI control for power converters: An application to the boost and modular multilevel converters. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June
dcterms.bibliographicCitationHernandez-Gomez, M.; Ortega, R.; Lamnabhi-Lagarrigue, F.; Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Control Syst. Technol. 2010, 18, 688–698spa
dcterms.bibliographicCitationJohnsen, J.K.; Allöwer, F. Interconnection and Damping Assignment Passivity-Based Control of a Four-Tank System. In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 111–122._8spa
dcterms.bibliographicCitationYazici, ˙I. Simple and robust voltage controller for buck converters based on the coefficient ratio method. Int. Trans. Electr. Energy Syst. 2020, 30,
dcterms.bibliographicCitationBingqing, S.; Zhengming, Z.; Shusheng, W.; Jintong, N.; Yunzhi, L. Load-current sensorless sliding-predictive control strategies for Boost converters. J. Tsinghua Univ. Technol. 2019, 59, 807spa
dcterms.bibliographicCitationMontoya, O.D.; Villa, J.L.; Gil-Gonzalez, W. PBC Design for Voltage Regulation in Buck Converters with Parametric Uncertainties. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019spa
dcterms.bibliographicCitationAstolfi, A.; Karagiannis, D.; Ortega, R. Nonlinear and Adaptive Control with Applications; Springer: London, UK, 2008spa
dc.subject.keywordsGeneralized passivity-based controllerspa
dc.subject.keywordsSecond-order DC-DC convertersspa
dc.subject.keywordsAveraging model in convertersspa
dc.subject.keywordsPort-controlled hamiltonian systemsspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.