Mostrar el registro sencillo del ítem
Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach
dc.contributor.author | Gil-González, Walter | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Restrepo, Carlos | |
dc.contributor.author | Hernández, Jesus C. | |
dc.date.accessioned | 2022-01-17T20:53:45Z | |
dc.date.available | 2022-01-17T20:53:45Z | |
dc.date.issued | 2021-09-24 | |
dc.date.submitted | 2022-01-07 | |
dc.identifier.citation | Gil-González, W.; Montoya, O.D.; Restrepo, C.; Hernández, J.C. Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach. Sensors 2021, 21, 6367. https://doi.org/10.3390/s21196367 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10385 | |
dc.description.abstract | The problem of voltage regulation in unknown constant resistive loads is addressed in this paper from the nonlinear control point of view for second-order DC-DC converters. The converters’ topologies analyzed are: (i) buck converter, (ii) boost converter, (iii) buck-boost converter, and (iv) non-inverting buck-boost converter. The averaging modeling method is used to model these converters, representing all these converter topologies with a generalized port-Controlled Hamiltonian (PCH) representation. The PCH representation shows that the second-order DC-DC converters exhibit a general bilinear structure which permits to design of a passivity-based controller with PI actions that ensures the asymptotic stability in the sense of Lyapunov. A linear estimator based on an integral estimator that allows reducing the number of current sensors required in the control implementation stage is used to determine the value of the unknown resistive load. The main advantage of this load estimator is that it ensures exponential convergence to the estimated variable. Numerical simulations and experimental validations show that the PI passivity-based control allows voltage regulation with first-order behavior, while the classical PI controller produces oscillations in the controlled variable, significantly when the load varies | spa |
dc.format.extent | 15 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Sensors - vol. 21 n° 19 | spa |
dc.title | Sensorless Adaptive Voltage Control for Classical DC-DC Converters Feeding Unknown Loads: A Generalized PI Passivity-Based Approach | spa |
dcterms.bibliographicCitation | Lund, P.D.; Byrne, J.; Haas, R.; Flynn, D. Advances in Energy Systems: The Large-Scale Renewable Energy Integration Challenge; John Wiley & Sons: Hoboken, NJ, USA, 2019 | spa |
dcterms.bibliographicCitation | Gavriluta, C.; Candela, I.; Citro, C.; Luna, A.; Rodriguez, P. Design considerations for primary control in multi-terminal VSC-HVDC grids. Electr. Power Syst. Res. 2015, 122, 33–41 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges. Int. J. Electr. Power Energy Syst. 2020, 123, 106299 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352 | spa |
dcterms.bibliographicCitation | Srinivasan, M.; Kwasinski, A. Control analysis of parallel DC-DC converters in a DC microgrid with constant power loads. Int. J. Electr. Power Energy Syst. 2020, 122, 106207 | spa |
dcterms.bibliographicCitation | Jin, C.; Wang, P.; Xiao, J.; Tang, Y.; Choo, F.H. Implementation of hierarchical control in DC microgrids. IEEE Trans. Ind. Electron. 2013, 61, 4032–4042. | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Espinosa-Perez, G. Adaptive control for second-order DC–DC converters: PBC approach. In Modeling, Operation, and Analysis of DC Grids; Elsevier: Cambridge, MA, USA, 2021; pp. 289–310. | spa |
dcterms.bibliographicCitation | Modeling, Operation, and Analysis of DC Grids; Elsevier: Cambridge, MA, USA, 2021; pp. 289–310. 8. Singh, B.; Shrivastava, A. Buck converter-based power supply design for low power light emitting diode lamp lighting. IET Power Electron. 2014, 7, 946–956 | spa |
dcterms.bibliographicCitation | Leon-Masich, A.; Valderrama-Blavi, H.; Bosque-Moncusí, J.M.; Maixe-Altes, J.; Martínez-Salamero, L. Sliding-mode-control-based boost converter for high-voltage–low-power applications. IEEE Trans. Ind. Electron. 2014, 62, 229–237 | spa |
dcterms.bibliographicCitation | Chen, X.; Pise, A.A.; Elmes, J.; Batarseh, I. Ultra-highly efficient low-power bidirectional cascaded buck-boost converter for portable PV-battery-devices applications. IEEE Trans. Ind. Appl. 2019, 55, 3989–4000 | spa |
dcterms.bibliographicCitation | Serna-Garcés, S.; Montoya, D.G.; Ramos-Paja, C. Control of a Charger/Discharger DC/DC Converter with Improved Disturbance Rejection for Bus Regulation. Energies 2018, 11, 594 | spa |
dcterms.bibliographicCitation | Serna-Garcés, S.; Montoya, D.G.; Ramos-Paja, C. Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems. Energies 2016, 9, 245 | spa |
dcterms.bibliographicCitation | Lin, X.; Liu, J.; Liu, F.; Liu, Z.; Gao, Y.; Sun, G. Fractional-Order Sliding Mode Approach of Buck Converters With Mismatched Disturbances. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3890–3900 | spa |
dcterms.bibliographicCitation | Liu, J.; Shen, X.; Alcaide, A.M.; Yin, Y.; Leon, J.I.; Vazquez, S.; Wu, L.; Franquelo, L.G. Sliding Mode Control of Grid-Connected NPC Converters Via High-Gain Observer. IEEE Trans. Ind. Electron. 2021, in press. | spa |
dcterms.bibliographicCitation | Liu, J.; Laghrouche, S.; Wack, M. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. Int. J. Control 2014, 87, 1117–1130. [ | spa |
dcterms.bibliographicCitation | Yin, Y.; Liu, J.; Wang, S.; Lin, H.; Vazquez, S.; Zeng, Q.; Franquelo, L.G.; Wu, L. Backstepping Control of a DC-DC Boost Converters Under Unknown Disturbances. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018 | spa |
dcterms.bibliographicCitation | Roy, T.K.; Mahmud, M.A.; Shen, W.; Haque, M.E.; Oo, A.M.T. Robust adaptive backstepping controller design for DC-DC buck converters with external disturbances. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016 | spa |
dcterms.bibliographicCitation | Bhattacharyya, D.; Padhee, S.; Pati, K.C. Modeling of DC–DC Converter Using Exact Feedback Linearization Method: A Discussion. IETE J. Res. 2018, 65, 843–854 | spa |
dcterms.bibliographicCitation | Cai, P.; Wu, X.; Sun, R.; Wu, Y. Exact feedback linearization of general four-level buck DC-DC converters. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017. [ | spa |
dcterms.bibliographicCitation | Yin, Y.; Liu, J.; Marquez, A.; Lin, X.; Leon, J.I.; Vazquez, S.; Franquelo, L.G.; Wu, L. Advanced Control Strategies for DC–DC Buck Converters With Parametric Uncertainties via Experimental Evaluation. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 5257–5267 | spa |
dcterms.bibliographicCitation | Montoya, O.; Gil-Gonzalez, W.; Garces, A.; Serra, F.; Hernandez, J. PI-PBC Approach for Voltage Regulation in Cuk Converters ´ with Adaptive Load Estimation. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020 | spa |
dcterms.bibliographicCitation | Ramirez, H.; Garzón, G.; Torres, C.; Navarrete, J.; Restrepo, C. LMI Control Design of a Non-Inverting Buck-Boost Converter: A Current Regulation Approach. TECCIENCIA 2017, 12, 79–85 | spa |
dcterms.bibliographicCitation | Magaldi, G.L.; Serra, F.M.; de Angelo, C.H.; Montoya, O.D.; Giral-Ramírez, D.A. Voltage Regulation of an Isolated DC Microgrid with a Constant Power Load: A Passivity-based Control Design. Electronics 2021, 10, 2085 | spa |
dcterms.bibliographicCitation | Rodighiero, F.; Freato, S. Design and implementation of low-loss non-inverting buck-boost for lithium-ion batteries charging applications. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), Warsaw, Poland, 11–14 September 2017 | spa |
dcterms.bibliographicCitation | Gaboriault, M.; Notman, A. A high efficiency, non-inverting, buck-boost DC-DC converter. In Proceedings of the Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 22–26 February 2004 | spa |
dcterms.bibliographicCitation | Kolsi, S.; Samet, H.; Amar, M.B. Design Analysis of DC-DC Converters Connected to a Photovoltaic Generator and Controlled by MPPT for Optimal Energy Transfer throughout a Clear Day. J. Power Energy Eng. 2014, 02, 27–34 | spa |
dcterms.bibliographicCitation | Radhika, S.; Margaret, V. A Review on DC-DC Converters with Photovoltaic System in DC Micro Grid. J. Phys. Conf. Ser. 2021, 1804, 012155 | spa |
dcterms.bibliographicCitation | Mazhari, I.; Parkhideh, B. DC-bus voltage regulation for DC distribution system with controllable DC load. In Proceedings of the 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Florianopolis, Brazil, 17–20 April 2017 | spa |
dcterms.bibliographicCitation | Aryani, D.R.; Song, H. Voltage Regulation in a Stand-Alone DC Microgrid. IFAC-PapersOnLine 2019, 52, 36–39 | spa |
dcterms.bibliographicCitation | Ortega, R.; Jiang, Z.; Hill, D. Passivity-based control of nonlinear systems: A tutorial. In Proceedings of the 1997 American Control Conference, Albuquerque, NM, USA, 6 June 1997 | spa |
dcterms.bibliographicCitation | Chen, W.; Saif, M. Passivity and Passivity-based controller design of a class of switched control systems. IFAC Proc. Vol. 2005, 38, 676–681. | spa |
dcterms.bibliographicCitation | Serra, F.M.; Angelo, C.H.D. IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions. Electr. Power Syst. Res. 2017, 142, 12–19 | spa |
dcterms.bibliographicCitation | Serra, F.M.; Angelo, C.H.D.; Forchetti, D.G. Interconnection and damping assignment control of a three-phase front end converter. Int. J. Electr. Power Energy Syst. 2014, 60, 317–324 | spa |
dcterms.bibliographicCitation | Cisneros, R.; Ortega, R.; Pirro, M.; Ippoliti, G.; Bergna, G.; Cabrera, M.M. Global tracking passivity-based PI control for power converters: An application to the boost and modular multilevel converters. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014. | spa |
dcterms.bibliographicCitation | Hernandez-Gomez, M.; Ortega, R.; Lamnabhi-Lagarrigue, F.; Escobar, G. Adaptive PI Stabilization of Switched Power Converters. IEEE Trans. Control Syst. Technol. 2010, 18, 688–698 | spa |
dcterms.bibliographicCitation | Johnsen, J.K.; Allöwer, F. Interconnection and Damping Assignment Passivity-Based Control of a Four-Tank System. In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 111–122._8 | spa |
dcterms.bibliographicCitation | Yazici, ˙I. Simple and robust voltage controller for buck converters based on the coefficient ratio method. Int. Trans. Electr. Energy Syst. 2020, 30, e12409. | spa |
dcterms.bibliographicCitation | Bingqing, S.; Zhengming, Z.; Shusheng, W.; Jintong, N.; Yunzhi, L. Load-current sensorless sliding-predictive control strategies for Boost converters. J. Tsinghua Univ. Technol. 2019, 59, 807 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Villa, J.L.; Gil-Gonzalez, W. PBC Design for Voltage Regulation in Buck Converters with Parametric Uncertainties. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019 | spa |
dcterms.bibliographicCitation | Astolfi, A.; Karagiannis, D.; Ortega, R. Nonlinear and Adaptive Control with Applications; Springer: London, UK, 2008 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.3390/s21196367 | |
dc.subject.keywords | Generalized passivity-based controller | spa |
dc.subject.keywords | Second-order DC-DC converters | spa |
dc.subject.keywords | Averaging model in converters | spa |
dc.subject.keywords | Port-controlled hamiltonian systems | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.