Mostrar el registro sencillo del ítem

dc.contributor.authorMartin Serra, Federico
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorAlvarado-Barrios, Lázaro
dc.contributor.authorÁlvarez-Arroyo, Cesar
dc.contributor.authorChamorro, Harold R.
dc.date.accessioned2022-01-17T20:50:10Z
dc.date.available2022-01-17T20:50:10Z
dc.date.issued2021-09-24
dc.date.submitted2022-01-07
dc.identifier.citationSerra, F.M.; Montoya, O.D.; Alvarado-Barrios, L.; Álvarez-Arroyo, C.; Chamorro, H.R. On the Optimal Selection and Integration of Batteries in DC Grids through a Mixed-Integer Quadratic Convex Formulation. Electronics 2021, 10, 2339. https:// doi.org/10.3390/electronics10192339spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10384
dc.description.abstractThis paper deals with the problem of the optimal selection and location of batteries in DC distribution grids by proposing a new mixed-integer convex model. The exact mixed-integer nonlinear model is transformed into a mixed-integer quadratic convex model (MIQC) by approximating the product among voltages in the power balance equations as a hyperplane. The most important characteristic of our proposal is that the MIQC formulations ensure the global optimum reaching via branch & bound methods and quadratic programming since each combination of the binary variables generates a node with a convex optimization subproblem. The formulation of the objective function is associated with the minimization of the energy losses for a daily operation scenario considering high renewable energy penetration. Numerical simulations show the effectiveness of the proposed MIQC model to reach the global optimum of the optimization model when compared with the exact optimization model in a 21-node test feeder. All the validations are carried out in the GAMS optimization software.spa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics - vol. 10 n° 19spa
dc.titleOn the Optimal Selection and Integration of Batteries in DC Grids through a Mixed-Integer Quadratic Convex Formulationspa
dcterms.bibliographicCitationGuerrero, J.; Blaabjerg, F.; Zhelev, T.; Hemmes, K.; Monmasson, E.; Jemei, S.; Comech, M.; Granadino, R.; Frau, J. Distributed Generation: Toward a New Energy Paradigm. IEEE Ind. Electron. Mag. 2010, 4, 52–64spa
dcterms.bibliographicCitationSaberi, H.; Nazaripouya, H.; Mehraeen, S. Implementation of a Stable Solar-Powered Microgrid Testbed for Remote Applications. Sustainability 2021, 13, 2707spa
dcterms.bibliographicCitationAkinyele, D.; Rayudu, R. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91.spa
dcterms.bibliographicCitationPandey, G.; Singh, S.N.; Rajpurohit, B.S.; Gonzalez-Longatt, F.M. Smart DC Grid for Autonomous Zero Net Electric Energy of Cluster of Buildings. IFAC-PapersOnLine 2015, 48, 108–113spa
dcterms.bibliographicCitationBlaabjerg, F.; Yang, Y.; Ma, K.; Wang, X. Advanced Grid Integration of Renewables Enabled by Power Electronics Technology. In Nachhaltige Energieversorgung und Integration von Speichern; Springer Fachmedien: Wiesbaden, Germany, 2015; pp. 3–9spa
dcterms.bibliographicCitationCarrasco, J.; Franquelo, L.; Bialasiewicz, J.; Galvan, E.; PortilloGuisado, R.; Prats, M.; Leon, J.; Moreno-Alfonso, N. PowerElectronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Trans. Ind. Electron. 2006, 53, 1002–1016spa
dcterms.bibliographicCitationWehbring, N.; Bleilevens, R.; Tepasse, B.; Priebe, J.; Moser, A. Strategies to convert AC into DC Medium Voltage Grids. In Proceedings of the 2018 53rd International Universities Power Engineering Conference (UPEC), Glasgow, UK, 4–7 September 2018spa
dcterms.bibliographicCitationShaqsi, A.Z.A.; Sopian, K.; Al-Hinai, A. Review of energy storage services, applications, limitations, and benefits. Energy Rep. 2020, 6, 288–306spa
dcterms.bibliographicCitationGonzalez-Longatt, F.; Sanchez, F.; Singh, S.N. On the topology for a smart direct current microgrid for a cluster of zero-net energy buildings. In Distributed Energy Resources in Microgrids; Elsevier: Amsterdam, The Netherlands, 2019; pp. 455–481spa
dcterms.bibliographicCitationWei, Z.; Quan, Z.; Wu, J.; Li, Y.; Pou, J.; Zhong, H. Deep Deterministic Policy Gradient-DRL Enabled Multiphysics-Constrained Fast Charging of Lithium-Ion Battery. IEEE Trans. Ind. Electron. 2021, in pressspa
dcterms.bibliographicCitationMontoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352spa
dcterms.bibliographicCitationStieneker, M.; Doncker, R.W.D. Medium-voltage DC distribution grids in urban areas. In Proceedings of the 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, Canada, 27–30 June 2016spa
dcterms.bibliographicCitationSoroudi, A. Power System Optimization Modeling in GAMS; Springer: Berlin/Heidelberg, Germany, 2017spa
dcterms.bibliographicCitationZocca, A.; Zwart, B. Minimizing heat loss in DC networks using batteries. In Proceedings of the 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 27–30 September 2016spa
dcterms.bibliographicCitationValencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 10148spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891.spa
dcterms.bibliographicCitationVai, V.; Suk, S.; Lorm, R.; Chhlonh, C.; Eng, S.; Bun, L. Optimal Reconfiguration in Distribution Systems with Distributed Generations Based on Modified Sequential Switch Opening and Exchange. Appl. Sci. 2021, 11, 2146.spa
dcterms.bibliographicCitationCardoso, G.; Stadler, M.; Siddiqui, A.; Marnay, C.; DeForest, N.; Barbosa-Póvoa, A.; Ferrão, P. Microgrid reliability modeling and battery scheduling using stochastic linear programming. Electr. Power Syst. Res. 2013, 103, 61–69.spa
dcterms.bibliographicCitationZhang, Y.; Jia, Q.S. Operational Optimization for Microgrid of Buildings with Distributed Solar Power and Battery. Asian J. Control 2017, 19, 996–1008.spa
dcterms.bibliographicCitationLuna, A.C.; Diaz, N.L.; Graells, M.; Vasquez, J.C.; Guerrero, J.M. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-Wind-Battery Microgrids: Modeling, Design, and Experimental Verification. IEEE Trans. Power Electron. 2017, 32, 2769–2783spa
dcterms.bibliographicCitationHome-Ortiz, J.M.; Pourakbari-Kasmaei, M.; Lehtonen, M.; Mantovani, J.R.S. Optimal location-allocation of storage devices and renewable-based DG in distribution systems. J. Energy Storage 2019, 172, 11–21.spa
dcterms.bibliographicCitationMacedo, L.H.; Ortega-Vazquez, M.A.; Romero, R. Optimal operation of storage systems in distribution networks considering battery degradation. In Proceedings of the 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE), Niteroi, Brazil, 12–16 May 2018spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8.spa
dcterms.bibliographicCitationMansuwan, K.; Jirapong, P.; Burana, S.; Thararak, P. Optimal Planning and Operation of Battery Energy Storage Systems in Smart Grids Using Improved Genetic Algorithm Based Intelligent Optimization Tool. In Proceedings of the 2018 International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 24–26 October 2018.spa
dcterms.bibliographicCitationMagnor, D.; Sauer, D.U. Optimization of PV Battery Systems Using Genetic Algorithms. Energy Procedia 2016, 99, 332–340spa
dcterms.bibliographicCitationBoonluk, P.; Siritaratiwat, A.; Fuangfoo, P.; Khunkitti, S. Optimal Siting and Sizing of Battery Energy Storage Systems for Distribution Network of Distribution System Operators. Batteries 2020, 6, 56. [spa
dcterms.bibliographicCitationIkeda, S.; Ooka, R. Metaheuristic optimization methods for a comprehensive operating schedule of battery, thermal energy storage, and heat source in a building energy system. Appl. Energy 2015, 151, 192–205spa
dcterms.bibliographicCitationKai, H.; Yong-Fang, G.; Zhi-Gang, L.; Hsiung-Cheng, L.; Ling-Ling, L. Development of Accurate Lithium-Ion Battery Model Based on Adaptive Random Disturbance PSO Algorithm. Math. Probl. Eng. 2018, 2018, 1–13.spa
dcterms.bibliographicCitationGrisales, L.F.; Grajales, A.; Montoya, O.D.; Hincapie, R.A.; Granada, M.; Castro, C.A. Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach. IEEE Lat. Am. Trans. 2017, 15, 1084–1090spa
dcterms.bibliographicCitationAaslid, P.; Geth, F.; Korpås, M.; Belsnes, M.M.; Fosso, O.B. Non-linear charge-based battery storage optimization model with bi-variate cubic spline constraints. J. Energy Storage 2020, 32, 101979spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710spa
dcterms.bibliographicCitationBerglund, F.; Zaferanlouei, S.; Korpås, M.; Uhlen, K. Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff Prosumer—A Norwegian Case Study. Energies 2019, 12, 4450spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L.; Orozco-Henao, C.; Serra, F. Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models. Energies 2019, 12, 4494spa
dcterms.bibliographicCitationWu, J.; Wei, Z.; Liu, K.; Quan, Z.; Li, Y. Battery-Involved Energy Management for Hybrid Electric Bus Based on Expert-Assistance Deep Deterministic Policy Gradient Algorithm. IEEE Trans. Veh. Technol. 2020, 69, 12786–12796spa
dcterms.bibliographicCitationWu, J.; Wei, Z.; Li, W.; Wang, Y.; Li, Y.; Sauer, D.U. Battery Thermal- and Health-Constrained Energy Management for Hybrid Electric Bus Based on Soft Actor-Critic DRL Algorithm. IEEE Trans. Ind. Inform. 2021, 17, 3751–3761spa
dcterms.bibliographicCitationBenson, H.Y.; Sa ˘glam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Holland, MI, USA, 2013; pp. 13–36.spa
dcterms.bibliographicCitationMolina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C.; Ramírez-Vanegas, C.A. Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS. Electronics 2021, 10, 1002spa
dcterms.bibliographicCitationdos Santos, C.; Cavalheiro, E.; Bartmeyer, P.; Lyra, C. A MINLP Model to Optimize Battery Placement and Operation in Smart Grids. In Proceedings of the 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 17–20 February 2020.spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506.spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153spa
dcterms.bibliographicCitation. Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. 2020, 23, 527–533spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps:// doi.org/10.3390/electronics10192339
dc.subject.keywordsBattery energy storage systemsspa
dc.subject.keywordsExact mathematical optimizationspa
dc.subject.keywordsGlobal optimum findingspa
dc.subject.keywordsMixed-integer quadratic programmingspa
dc.subject.keywordsPower flow approximationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.