Mostrar el registro sencillo del ítem
Contribution of CFRP to the shear strength of retrofitted lightly-reinforced concrete panels
dc.contributor.author | Carrillo, Julián | |
dc.contributor.author | Rodríguez, Daniela | |
dc.contributor.author | Villar-Salinas, Sergio | |
dc.date.accessioned | 2022-01-17T20:34:15Z | |
dc.date.available | 2022-01-17T20:34:15Z | |
dc.date.issued | 2021-07-12 | |
dc.date.submitted | 2022-01-06 | |
dc.identifier.citation | Julian Carrillo, Daniela Rodríguez, Sergio Villar-Salinas, Contribution of CFRP to the shear strength of retrofitted lightly-reinforced concrete panels, Journal of Building Engineering, Volume 44, 2021, 102722, ISSN 2352-7102, https://doi.org/10.1016/j.jobe.2021.102722. (https://www.sciencedirect.com/science/article/pii/S2352710221005805) | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10381 | |
dc.description.abstract | Low-rise buildings with thin Reinforced Concrete (RC) walls that do not comply with the minimum web shear reinforcement prescribed by current earthquake-resistant codes can be found in some Latin American countries. Previous experimental studies evidence that Carbon Fiber Reinforced Polymers (CFRP) strips may be used to retrofit RC walls for shear forces. The two models available in the literature to predict the contribution of CFRP to the shear strength of RC walls exclude key variables for assessing the seismic performance of lightlyreinforced concrete walls retrofitted with CFRP. In this research, a model for predicting the contribution of CFRP to the shear strength of lightly-reinforced concrete panels is initially developed. A model to correlate the contribution of CFRP to shear strength of lightly-reinforced concrete panels with that of thin and lightlyreinforced concrete walls is also proposed. The experimental program includes cyclic diagonal compression tests on fourteen lightly-reinforced concrete panels: one plain concrete panel and thirteen panels reinforced internally with web shear reinforcement-ratio equal to 0.11%; twelve retrofitted with CFRP, and one RC panel retrofitted with a concrete overlay conventionally reinforced with a welded-wire mesh. The CFRP configuration were diagonal or horizontal with one strip, and diagonal or horizontal with three strips. Three volumetric ratios of CFRP were studied in this research: 0.02%, 0.06% and 0.09%. The effectiveness of the configuration and volumetric-ratio of CFRP on performance of retrofitted panels was evaluated in terms of cracking patterns, failure modes, shear strength and energy dissipation capacity obtained from shear-strain curves measured during cyclic diagonal compression tests. The model proposed to predict the contribution of CFRP to the peak shear strength of retrofitted lightly-reinforced concrete panels depends on the properties, volumetric ratio and configuration of CFRP on the panel. | spa |
dc.format.extent | 15 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Building Engineering- vol. 44 | spa |
dc.title | Contribution of CFRP to the shear strength of retrofitted lightly-reinforced concrete panels | spa |
dcterms.bibliographicCitation | Carrillo J. and Alcocer S. (2012). Backbone model for performance-based seismic design of RC walls for low-rise housing. Earthquake spectra, 28(3), 943–964, doi: 10.1193/1.4000068 | spa |
dcterms.bibliographicCitation | Oviedo J., Bernal A. and Duque M. (2011). Current situation of low-rise wall type structures: Colombia. World Federation of Engineering Organizations, WFEO. Disaster Risk Management Committee | spa |
dcterms.bibliographicCitation | CCCR-84 (1984). Colombian code for earthquake-resistant construction. Colombian Association of Earthquake Engineering, AIS. (in Spanish). | spa |
dcterms.bibliographicCitation | NSR-98 (1998). Colombian code for earthquake resistant construction. Colombian Association of Earthquake Engineering, AIS. (in Spanish). | spa |
dcterms.bibliographicCitation | NSR-10 (2010). Colombian code for earthquake-resistant construction. Colombian Association of Earthquake Engineering, AIS. (in Spanish) | spa |
dcterms.bibliographicCitation | ACI 318-08 (2008). Building code requirements for structural concrete and commentary. American Concrete Institute, ACI. | spa |
dcterms.bibliographicCitation | Fiorato A., Oesterle R. and Corley W. (1983). Behavior of earthquake resistant structural walls before and after repair. ACI Journal, 80(5), 403–413, doi: 10.14359/10864 | spa |
dcterms.bibliographicCitation | Hube M., Gálvez H., Jünemann R. and Elwood K. (2018). Repaired reinforced concrete wall buildings in Chile after 2010 Maule earthquake. 11th U.S. National Conference on Earthquake Engineering. Los Angeles, California | spa |
dcterms.bibliographicCitation | Carrillo J., Alcocer S. and Pincheira. (2014). Seismic rehabilitation of lightly-reinforced, low-rise walls with SFRC overlays. ACI Special Publication, SP-296-10, American Concrete Institute, ACI | spa |
dcterms.bibliographicCitation | Ho Cho S., Tupper B., Cook W. and Mitchell D. (2004). Structural steel boundary elements for ductile concrete walls. Structural Engineering, 130(5), 762–768, doi: 10.1061/(ASCE)0733-9445(2004)130:5(762). | spa |
dcterms.bibliographicCitation | Elnashai A. and Pinho R. (1998). Repair and retrofitting of RC walls using selective techniques. Earthquake Engineering, 2(4), 525–568, doi: 10.1080/13632469809350334. | spa |
dcterms.bibliographicCitation | Badoux M. and Jirsa J. (1990). Steel bracing of RC frames for seismic retrofitting. Structural Engineering, 116(1), 55–74, doi: 10.1061/(ASCE)0733-9445(1990)116:1(55). | spa |
dcterms.bibliographicCitation | Taghdi M., Bruneau M. and Saatcioglu M. (2000). Seismic retrofitting of low-rise masonry concrete walls using steel strips. Structural Engineering, 126(9), 1017–1025, doi: 10.1061/(ASCE)0733-9445(2000)126:9(1017). | spa |
dcterms.bibliographicCitation | GangaRao H., Taly N. and Vijay P. (2007). Reinforced Concrete Design with FRP Composites. Ed. 1, CRC Press, Boca Raton, Florida. | spa |
dcterms.bibliographicCitation | Galal K. and El-Sokkary H. (2008). Recent advancements in retrofit of RC shear walls. 14th World Conference on Earthquake Engineering. Beijing, China. | spa |
dcterms.bibliographicCitation | Lombard J., Lau D., Humar J., Foo S. and Cheung, M. (2000). Seismic strengthening and repair of reinforced concrete shear walls. 12th World Conference on Earthquake Engineering. Auckland, New Zealand. | spa |
dcterms.bibliographicCitation | Triantafillou T. and Antonopoulos C. (2000). Design of concrete flexural members strengthened in shear with FRP. Composites for Construction, 4(4), 198–205, doi: 10.1061/(ASCE)1090-0268(2000)4:4(198). | spa |
dcterms.bibliographicCitation | ] Machado A. (2005). Reinforcement of reinforced concrete structures with carbon fibers. Ed. 1, Degussa, Brazil. (in Spanish). | spa |
dcterms.bibliographicCitation | Alcaino P., and Santa-Maria H. (2008). Experimental response of externally retrofitted masonry walls subjected to shear loading. Composites for Construction, 12(5), 489–498, doi: 10.1061/(ASCE)1090-0268(2008)12:5(489). | spa |
dcterms.bibliographicCitation | Babaeidarab S., Arboleda D., Loreto G. and Nanni A. (2014). Shear strengthening of un-reinforced concrete masonry walls with fabric-reinforced-cementitious-matrix. Construction and Building Materials, 65:243–253, doi: 10.1016/j.conbuildmat.2014.04.116. | spa |
dcterms.bibliographicCitation | Lombard J. (1999). Seismic strengthening and repair of reinforced concrete shear walls using externally bonded carbon fibre tow sheets. MSc. Thesis. Carleton University, Ottawa, Canada | spa |
dcterms.bibliographicCitation | ACI 440 (2008). Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. American Concrete Institute, ACI. | spa |
dcterms.bibliographicCitation | AC 125 (2001). Acceptance criteria for concrete reinforced and unreinforced masonry strengthening using FiberReinforced Polymer (FRP), Composite Systems. ICBO Evaluation Service Inc. | spa |
dcterms.bibliographicCitation | FIB 14 (2001). Externally bonded FRP reinforcement for RC structures: technical report on the design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. Fédération Internationale du Betón, FIB, Switzerland. | spa |
dcterms.bibliographicCitation | ASTM A1064 (2018). Standard specification for carbon-steel wire and welded wire reinforcement, plain and deformed, for concrete. West Conshohocken, PA | spa |
dcterms.bibliographicCitation | Carrillo J., Diaz C. and Arteta C. (2019). Tensile mechanical properties of electro-welded wire meshes in Bogotá, Colombia. Construction and Building Materials, 195:352-362, doi: 10.1016/j.conbuildmat.2018.11.096. | spa |
dcterms.bibliographicCitation | Almeida J., Pereira E. and Barros J. (2014). Performance assessment of overlay strengthened masonry under cyclic loading using the diagonal tensile test. International Masonry Society (IMS). 9th International Masonry Conference. Guimaraes, Portugal. | spa |
dcterms.bibliographicCitation | ASTM (2015). Standard test method for diagonal tension (shear) in masonry assemblages (ASTM E 519-15). American Society for Testing and Materials, ASTM. | spa |
dcterms.bibliographicCitation | Rowntree D. (1984). Introduction to statistics: a non-mathematical approach, 1st Ed., Norma Ed., Bogotá (in Spanish). | spa |
dcterms.bibliographicCitation | Rustom A. (2012). Descriptive statistics, probability and inference: a conceptual and applicated vision. 1st Ed., Universidad de Chile. (in Spanish). | spa |
dcterms.bibliographicCitation | Carrillo J., Correal F. and Echeverri F. (2017). Quasi-static cyclic tests of RC walls retrofitted | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | 10.1016/j.jobe.2021.102722 | |
dc.subject.keywords | Retrofit | spa |
dc.subject.keywords | CFRP | spa |
dc.subject.keywords | Lightly-reinforced panels | spa |
dc.subject.keywords | Low-rise buildings | spa |
dc.subject.keywords | Diagonal compression test | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.