Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorCabrera, Alexander Molina
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorHincapié-Isaza, Ricardo Alberto
dc.contributor.authorGranada, Mauricio
dc.date.accessioned2021-09-28T14:32:05Z
dc.date.available2021-09-28T14:32:05Z
dc.date.issued2021-05-14
dc.date.submitted2021-09-27
dc.identifier.citationMontoya OD, Molina-Cabrera A, Grisales-Noreña LF, Hincapié RA, Granada M. Improved Genetic Algorithm for Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach. Computation. 2021; 9(6):67. https://doi.org/10.3390/computation9060067spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10372
dc.description.abstractThis paper addresses the phase-balancing problem in three-phase power grids with the radial configuration from the perspective of master–slave optimization. The master stage corresponds to an improved version of the Chu and Beasley genetic algorithm, which is based on the multi-point mutation operator and the generation of solutions using a Gaussian normal distribution based on the exploration and exploitation schemes of the vortex search algorithm. The master stage is entrusted with determining the configuration of the phases by using an integer codification. In the slave stage, a power flow for imbalanced distribution grids based on the three-phase version of the successive approximation method was used to determine the costs of daily energy losses. The objective of the optimization model is to minimize the annual operative costs of the network by considering the daily active and reactive power curves. Numerical results from a modified version of the IEEE 37-node test feeder demonstrate that it is possible to reduce the annual operative costs of the network by approximately 20% by using optimal load balancing. In addition, numerical results demonstrated that the improved version of the CBGA is at least three times faster than the classical CBGA, this was obtained in the peak load case for a test feeder composed of 15 nodes; also, the improved version of the CBGA was nineteen times faster than the vortex search algorithm. Other comparisons with the sine–cosine algorithm and the black hole optimizer confirmed the efficiency of the proposed optimization method regarding running time and objective function valuesspa
dc.format.extent22 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceComputation 2021, 9, 1–22spa
dc.titleImproved genetic algorithm for phase-balancing in three-phase distribution networks: A master-slave optimization approachspa
dcterms.bibliographicCitationTemiz, A.; Almalki, A.M.; Kahraman, Ö; Alshahrani, S.S.; Sönmez, E.B.; Almutairi, S.S.; Nadar, A.; Smiai, M.S.; Alabduljabbar, A.A. Investigation of MV Distribution Networks with High-Penetration Distributed PVs: Study for an Urban Area. Energy Procedia 2017, 141, 517–524. doi:10.1016/j.egypro.2017.11.069.spa
dcterms.bibliographicCitationCortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282. doi:10.3390/en14051282spa
dcterms.bibliographicCitationAboshady, F.M.; Thomas, D.W.P.; Sumner, M. A Wideband Single End Fault Location Scheme for Active Untransposed Distribution Systems. IEEE Trans. Smart Grid 2020, 11, 2115–2124. doi:10.1109/tsg.2019.2947870.spa
dcterms.bibliographicCitationArias, J.; Calle, M.; Turizo, D.; Guerrero, J.; Candelo-Becerra, J. Historical Load Balance in Distribution Systems Using the Branch and Bound Algorithm. Energies 2019, 12, 1219. doi:10.3390/en12071219spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. doi:10.3390/app11052175spa
dcterms.bibliographicCitationCabrera, J.B.; Veiga, M.F.; Morales, D.X.; Medina, R. Reducing Power Losses in Smart Grids with Cooperative Game Theory. In Advanced Communication and Control Methods for Future Smartgrids; IntechOpen: London, UK, 2019. doi:10.5772/intechopen.88568spa
dcterms.bibliographicCitationOgunsina, A.A.; Petinrin, M.O.; Petinrin, O.O.; Offornedo, E.N.; Petinrin, J.O.; Asaolu, G.O. Optimal distributed generation location and sizing for loss minimization and voltage profile optimization using ant colony algorithm. SN Appl. Sci. 2021, 3. Doi: 10.1007/s42452-021-04226-y.spa
dcterms.bibliographicCitationHooshmand, R.; Soltani, S. Simultaneous optimization of phase balancing and reconfiguration in distribution networks using BF-NM algorithm. Int. J. Electr. Power Energy Syst. 2012, 41, 76–86. doi:10.1016/j.ijepes.2012.03.010.spa
dcterms.bibliographicCitationAl-Sumaiti, A.S.; Kavousi-Fard, A.; Salama, M.; Pourbehzadi, M.; Reddy, S.; Rasheed, M.B. Economic Assessment of Distributed Generation Technologies: A Feasibility Study and Comparison with the Literature. Energies 2020, 13, 2764. doi:10.3390/en13112764.spa
dcterms.bibliographicCitationRajaram, R.; Kumar, K.S.; Rajasekar, N. Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with Distributed Generation (DG). Energy Rep. 2015, 1, 116–122. doi:10.1016/j.egyr.2015.03.002spa
dcterms.bibliographicCitationGrigoras, , G.; Neagu, B.C.; Gavrilas, , M.; Tris,tiu, I.; Bulac, C. Optimal Phase Load Balancing in Low Voltage Distribution Networks Using a Smart Meter Data-Based Algorithm. Mathematics 2020, 8, 549. doi:10.3390/math8040549spa
dcterms.bibliographicCitationBoroujeni, S.T.; Mardaneh, M.; Hashemi, Z. A Dynamic and Heuristic Phase Balancing Method for LV Feeders. Appl. Comput. Intell. Soft Comput. 2016, 2016, 1–8. doi:10.1155/2016/6928080spa
dcterms.bibliographicCitationGranada-Echeverri, M.; Gallego-Rendón, R.A.; López-Lezama, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Cienc. 2012, 8, 121–140. doi:10.17230/ingciencia.8.15.6spa
dcterms.bibliographicCitationMontoya, O.D.; Grajales, A.; Hincapié, R.A.; Granada, M. A new approach to solve the distribution system planning problem considering automatic reclosers. Ingeniare. Rev. Chil. Ing. 2017, 25, 415–429. doi:10.4067/s0718-33052017000300415spa
dcterms.bibliographicCitationGarcés, A.; Castaño, J.C.; Rios, M.A. Phase Balancing in Power Distribution Grids: A Genetic Algorithm with a Group-Based Codification. In Energy Systems; Springer International Publishing: Cham, Switzerland, 2020; pp. 325–342. doi:10.1007/978-3-030- 36115-0_11.spa
dcterms.bibliographicCitation. Darmawan, I.; Kuspriyanto, Y.; Priyan, M.I.J. Integration of Genetic and Tabu Search algorithm based load balancing for heterogenous grid computing. In Proceedings of the 2013 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Jakarta, Indonesia, 19–21 November 2013. doi:10.1109/ic3ina.2013.6819195spa
dcterms.bibliographicCitation. Li, D.; Qiang, R.; Yoon, S.W. Balanced Adaptive Tabu Search Algorithm to Optimize Dual-gantry Pick-and-place Assembly. Procedia Manuf. 2017, 11, 1892–1899. doi:10.1016/j.promfg.2017.07.331spa
dcterms.bibliographicCitationSim, K.M.; Sun, W.H. Ant colony optimization for routing and load-balancing: Survey and new directions. IEEE Trans. Syst. Man, Cybern. Part A Syst. Humans 2003, 33, 560–572. doi:10.1109/tsmca.2003.817391spa
dcterms.bibliographicCitationKeskinturk, T.; Yildirim, M.B.; Barut, M. An ant colony optimization algorithm for load balancing in parallel machines with sequence-dependent setup times. Comput. Oper. Res. 2012, 39, 1225–1235. doi:10.1016/j.cor.2010.12.003.spa
dcterms.bibliographicCitationHuang, M.Y.; Chen, C.S.; Lin, C.H.; Kang, M.S.; Chuang, H.J.; Huang, C.W. Three-phase balancing of distribution feeders using immune algorithm. IET Gener. Transm. Distrib. 2008, 2, 383. doi:10.1049/iet-gtd:20070206spa
dcterms.bibliographicCitation. Garces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids. Appl. Sci. 2021, 11, 1972. doi:10.3390/app11051972spa
dcterms.bibliographicCitationAmon, D.A. A Modified Bat Algorithm for Power Loss Reduction in Electrical Distribution System. Telkomnika Indones. J. Electr. Eng. 2015, 14. doi:10.11591/telkomnika.v14i1.7629.spa
dcterms.bibliographicCitationToma, N.; Ivanov, O.; Neagu, B.; Gavrila, M. A PSO Algorithm for Phase Load Balancing in Low Voltage Distribution Networks. In Proceedings of the 2018 International Conference and Exposition on Electrical Furthermore, Power Engineering (EPE), Iasi, Romania, 18–19 October 2018. doi:10.1109/icepe.2018.8559805.spa
dcterms.bibliographicCitationSchweickardt, G.; Alvarez, J.M.G.; Casanova, C. Metaheuristics approaches to solve combinatorial optimization problems in distribution power systems. An application to Phase Balancing in low voltage three-phase networks. Int. J. Electr. Power Energy Syst. 2016, 76, 1–10. doi:10.1016/j.ijepes.2015.09.023.spa
dcterms.bibliographicCitationSathiskumar, M.; kumar, A.N.; Lakshminarasimman, L.; Thiruvenkadam, S. A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system. Int. J. Electr. Power Energy Syst. 2012, 42, 91–97. doi:10.1016/j.ijepes.2012.03.029spa
dcterms.bibliographicCitationZhu, J.; Bilbro, G.; Chow, M.Y. Phase balancing using simulated annealing. IEEE Trans. Power Syst. 1999, 14, 1508–1513. doi:10.1109/59.801943.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020, 23, 1351–1363. doi:10.1016/j.jestch.2020.08.002spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. doi:10.1016/j.epsr.2020.106454spa
dcterms.bibliographicCitationMontoya, O.D.; Giraldo, J.S.; Grisales-Noreña, L.F.; Chamorro, H.R.; Alvarado-Barrios, L. Accurate and Efficient Derivative-Free Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation 2021, 9, 61. doi:10.3390/computation9060061spa
dcterms.bibliographicCitationDa Cunha, A.S.; Peixoto, F.C.; Prata, D.M. Robust data reconciliation in chemical reactors. Comput. Chem. Eng. 2021, 145, 107170. doi:10.1016/j.compchemeng.2020.107170.spa
dcterms.bibliographicCitationSereeter, B.; Vuik, K.; Witteveen, C. Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks. Energies 2017, 10, 1658. doi:10.3390/en10101658spa
dcterms.bibliographicCitationShen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511. doi:10.3390/en11030511.spa
dcterms.bibliographicCitation. Oliveira-De-Jesus, P.M.D.; Rojas, A.A.; Gonzalez-Longatt, F.M. Unbalanced Power Flow Analysis in Distribution Systems Using TRX Matrix: Implementation Using DIgSILENT Programming Language. In PowerFactory Applications for Power System Analysis; Springer International Publishing: Cham, Switzerland, 2014; pp. 85–110. doi:10.1007/978-3-319-12958-7_4.spa
dcterms.bibliographicCitationDo ˘gan, B.; Ölmez, T. Vortex search algorithm for the analog active filter component selection problem. AEU Int. J. Electron. Commun. 2015, 69, 1243–1253. doi:10.1016/j.aeue.2015.05.005spa
dcterms.bibliographicCitationLi, P.; Zhao, Y. A quantum-inspired vortex search algorithm with application to function optimization. Nat. Comput. 2018, 18, 647–674. doi:10.1007/s11047-018-9704-z.spa
dcterms.bibliographicCitationMontoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26. doi:10.3390/electronics10010026.spa
dcterms.bibliographicCitationDeeb, H.; Sarangi, A.; Mishra, D.; Sarangi, S.K. Improved Black Hole optimization algorithm for data clustering. J. King Saud Univ. Comput. Inf. Sci. 2020. doi:10.1016/j.jksuci.2020.12.013.spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L.; Orozco-Henao, C.; Serra, F. Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models. Energies 2019, 12, 4494. doi:10.3390/en12234494.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/computation9060067
dc.subject.keywordsThree-phase distribution networksspa
dc.subject.keywordsPhase-balancing problemspa
dc.subject.keywordsImproved Chu and Beasley genetic algorithmspa
dc.subject.keywordsMutation multi-point criteriaspa
dc.subject.keywordsVortex search algorithmspa
dc.subject.keywordsNormal Gaussian distributionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.