Mostrar el registro sencillo del ítem

dc.contributor.authorPayares Guevara, Carlos R.
dc.contributor.authorArias Amaya, Fabián
dc.coverage.spatialArgentina
dc.date.accessioned2021-09-22T21:27:13Z
dc.date.available2021-09-22T21:27:13Z
dc.date.issued2021-04-29
dc.date.submitted2021-09-08
dc.identifier.citationPayares Guevara, Carlos R. y Fabián A. Arias Amaya. "Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4" Revista de La Unión Matemática Argentina , vol. 62, no. 1, 29 de abril de 2021, págs. 123-139, https://doi.org/10.33044/revuma.1555.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10366
dc.description.abstractAfter the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the simple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G(F4,a).spa
dc.format.extent17 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRevista de la Unión Matemática Argentina, Vol. 62, No. 1, 2021spa
dc.titleClassical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4spa
dcterms.bibliographicCitationA. Grishkov and A. Premet, Simple Lie algebras of absolute toral rank 2 in characteristic 2, Preprint. https://www.ime.usp.br/˜grishkov/papers/asp.pdf.spa
dcterms.bibliographicCitationA. Grishkov, On simple Lie algebras over a field of characteristic 2, J. Algebra 363 (2012), 14–18. MR 2925843.spa
dcterms.bibliographicCitationS. P. Demuˇskin, Cartan subalgebras of the simple Lie p-algebras Wn and Sn, Sibirsk. Mat. Z. ˇ 11 (1970), 310–325. MR 0262310spa
dcterms.bibliographicCitationG. M. D. Hogeweij, Almost-classical Lie algebras. I, II, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 4, 441–452, 453–460. MR 0683531.spa
dcterms.bibliographicCitationN. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers, New York, 1962. MR 0143793.spa
dcterms.bibliographicCitationN. Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), no. 2, 206–224. MR 1501922spa
dcterms.bibliographicCitationV. G. Kac, The classification of the simple Lie algebras over a field with non-zero characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 385–408. MR 0276286spa
dcterms.bibliographicCitationI. Kaplansky, Linear algebra and geometry. A second course, Allyn and Bacon, Boston, MA, 1969. MR 0249444.spa
dcterms.bibliographicCitationG. B. Seligman, On Lie algebras of prime characteristic, Mem. Amer. Math. Soc. 19 (1956). MR 0077876.spa
dcterms.bibliographicCitationS. Skryabin, Toral rank one simple Lie algebras of low characteristics, J. Algebra 200 (1998), no. 2, 650–700. MR 1610680spa
dcterms.bibliographicCitationR. Steinberg, Automorphisms of classical Lie algebras, Pacific J. Math. 11 (1961), 1119–1129. MR 0143845spa
dcterms.bibliographicCitationH. Strade, The absolute toral rank of a Lie algebra, in Lie algebras, Madison 1987, 1–28, Lecture Notes in Math., 1373, Springer, Berlin, 1989. MR 1007321.spa
dcterms.bibliographicCitationB. Ju. Ve˘ısfe˘ıler and V. G. Kac, Exponentials in Lie algebras of characteristic p, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 762–788. MR 0306282spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.33044/revuma.1555
dc.subject.keywordsSimple Lie 2-algebraspa
dc.subject.keywordsToral rankspa
dc.subject.keywordsClassical type lie algebraspa
dc.subject.keywordsContragredient lie algebraspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.