Mostrar el registro sencillo del ítem
Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4
dc.contributor.author | Payares Guevara, Carlos R. | |
dc.contributor.author | Arias Amaya, Fabián | |
dc.coverage.spatial | Argentina | |
dc.date.accessioned | 2021-09-22T21:27:13Z | |
dc.date.available | 2021-09-22T21:27:13Z | |
dc.date.issued | 2021-04-29 | |
dc.date.submitted | 2021-09-08 | |
dc.identifier.citation | Payares Guevara, Carlos R. y Fabián A. Arias Amaya. "Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4" Revista de La Unión Matemática Argentina , vol. 62, no. 1, 29 de abril de 2021, págs. 123-139, https://doi.org/10.33044/revuma.1555. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10366 | |
dc.description.abstract | After the classification of simple Lie algebras over a field of characteristic p > 3, the main problem not yet solved in the theory of finite dimensional Lie algebras is the classification of simple Lie algebras over a field of characteristic 2. The first result for this classification problem ensures that all finite dimensional Lie algebras of absolute toral rank 1 over an algebraically closed field of characteristic 2 are soluble. Describing simple Lie algebras (respectively, Lie 2-algebras) of finite dimension of absolute toral rank (respectively, toral rank) 3 over an algebraically closed field of characteristic 2 is still an open problem. In this paper we show that there are no classical type simple Lie 2-algebras with toral rank odd and furthermore that the simple contragredient Lie 2-algebra G(F4,a) of dimension 34 has toral rank 4. Additionally, we give the Cartan decomposition of G(F4,a). | spa |
dc.format.extent | 17 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Revista de la Unión Matemática Argentina, Vol. 62, No. 1, 2021 | spa |
dc.title | Classical simple Lie 2-algebras of odd toral rank and a contragredient Lie 2-algebra of toral rank 4 | spa |
dcterms.bibliographicCitation | A. Grishkov and A. Premet, Simple Lie algebras of absolute toral rank 2 in characteristic 2, Preprint. https://www.ime.usp.br/˜grishkov/papers/asp.pdf. | spa |
dcterms.bibliographicCitation | A. Grishkov, On simple Lie algebras over a field of characteristic 2, J. Algebra 363 (2012), 14–18. MR 2925843. | spa |
dcterms.bibliographicCitation | S. P. Demuˇskin, Cartan subalgebras of the simple Lie p-algebras Wn and Sn, Sibirsk. Mat. Z. ˇ 11 (1970), 310–325. MR 0262310 | spa |
dcterms.bibliographicCitation | G. M. D. Hogeweij, Almost-classical Lie algebras. I, II, Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 4, 441–452, 453–460. MR 0683531. | spa |
dcterms.bibliographicCitation | N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers, New York, 1962. MR 0143793. | spa |
dcterms.bibliographicCitation | N. Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), no. 2, 206–224. MR 1501922 | spa |
dcterms.bibliographicCitation | V. G. Kac, The classification of the simple Lie algebras over a field with non-zero characteristic, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 385–408. MR 0276286 | spa |
dcterms.bibliographicCitation | I. Kaplansky, Linear algebra and geometry. A second course, Allyn and Bacon, Boston, MA, 1969. MR 0249444. | spa |
dcterms.bibliographicCitation | G. B. Seligman, On Lie algebras of prime characteristic, Mem. Amer. Math. Soc. 19 (1956). MR 0077876. | spa |
dcterms.bibliographicCitation | S. Skryabin, Toral rank one simple Lie algebras of low characteristics, J. Algebra 200 (1998), no. 2, 650–700. MR 1610680 | spa |
dcterms.bibliographicCitation | R. Steinberg, Automorphisms of classical Lie algebras, Pacific J. Math. 11 (1961), 1119–1129. MR 0143845 | spa |
dcterms.bibliographicCitation | H. Strade, The absolute toral rank of a Lie algebra, in Lie algebras, Madison 1987, 1–28, Lecture Notes in Math., 1373, Springer, Berlin, 1989. MR 1007321. | spa |
dcterms.bibliographicCitation | B. Ju. Ve˘ısfe˘ıler and V. G. Kac, Exponentials in Lie algebras of characteristic p, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 762–788. MR 0306282 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | 10.33044/revuma.1555 | |
dc.subject.keywords | Simple Lie 2-algebra | spa |
dc.subject.keywords | Toral rank | spa |
dc.subject.keywords | Classical type lie algebra | spa |
dc.subject.keywords | Contragredient lie algebra | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.