Mostrar el registro sencillo del ítem
Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light
dc.contributor.author | Meza, Jhacson | |
dc.contributor.author | Contreras Ortiz, Sonia Helena | |
dc.contributor.author | Romero, Lenny A | |
dc.contributor.author | Marrugo Hernández, Andrés Guillermo | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2021-08-06T12:30:11Z | |
dc.date.available | 2021-08-06T12:30:11Z | |
dc.date.issued | 2021-05-21 | |
dc.date.submitted | 2021-08-05 | |
dc.identifier.citation | Jhacson Meza, Sonia H. Contreras-Ortiz, Lenny A. Romero Perez, and Andrés G. Marrugo "Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light," Optical Engineering 60(5), 054106 (21 May 2021). ttps://doi.org/10.1117/1.OE.60.5.054106 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10356 | |
dc.description.abstract | We propose a three-dimensional (3D) multimodal medical imaging system that combines freehand ultrasound and structured light 3D reconstruction in a single coordinate system without requiring registration. To the best of our knowledge, these techniques have not been combined as a multimodal imaging technique. The system complements the internal 3D information acquired with ultrasound with the external surface measured with the structured light technique. Moreover, the ultrasound probe’s optical tracking for pose estimation was implemented based on a convolutional neural network. Experimental results show the system’s high accuracy and reproducibility, as well as its potential for preoperative and intraoperative applications. The experimental multimodal error, or the distance from two surfaces obtained with different modalities, was 0.12 mm | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Optical Engineering 60(5), 054106 (21 May 2021). | spa |
dc.title | Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light | spa |
dcterms.bibliographicCitation | P. Mascagni et al., “New intraoperative imaging technologies: innovating the surgeon’s eye toward surgical precision,” J. Surg. Oncol. 118, 265–282 (2018). | spa |
dcterms.bibliographicCitation | E. J. R. van Beek et al., “Value of MRI in medicine: more than just another test?” J. Magn. Reson. Imaging 49, e14–e25 (2019). | spa |
dcterms.bibliographicCitation | S. H. C. Ortiz, T. Chiu, and M. D. Fox, “Ultrasound image enhancement: a review,” Biomed. Signal Process. Control 7(5), 419–428 (2012). | spa |
dcterms.bibliographicCitation | Q. Huang and Z. Zeng, “A review on real-time 3d ultrasound imaging technology,” Biomed. Res. Int. 2017, 6027029 (2017). | spa |
dcterms.bibliographicCitation | E. Colley et al., “A methodology for non-invasive 3-d surveillance of arteriovenous fistulae using freehand ultrasound,” IEEE Trans. Biomed. Eng. 65(8), 1885–1891 (2018). | spa |
dcterms.bibliographicCitation | S. Zhang, “High-speed 3D shape measurement with structured light methods: a review,” Opt. Lasers Eng. 106, 119–131 (2018). | spa |
dcterms.bibliographicCitation | A. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for threedimensional surface metrology: a review [Invited],” J. Opt. Soc. Am. A 37(9), B60–18 (2020). | spa |
dcterms.bibliographicCitation | F. Zhang et al., “Coaxial projective imaging system for surgical navigation and telementoring,” J. Biomed. Opt. 24, 105002 (2019). | spa |
dcterms.bibliographicCitation | S. Van der Jeught and J. J. J. Dirckx, “Real-time structured light-based otoscopy for quantitative measurement of eardrum deformation,” J. Biomed. Opt. 22, 016008 (2017). | spa |
dcterms.bibliographicCitation | T. T. Quang et al., “Fluorescence imaging topography scanning system for intraoperative multimodal imaging,” PLoS One 12, e0174928 (2017). | spa |
dcterms.bibliographicCitation | E. M. A. Anas, P. Mousavi, and P. Abolmaesumi, “A deep learning approach for real time prostate segmentation in freehand ultrasound guided biopsy,” Med. Image Anal. 48, 107–116 (2018). | spa |
dcterms.bibliographicCitation | M. Anzidei et al., “Imaging-guided chest biopsies: techniques and clinical results,” Insights Imaging 8(4), 419–428 (2017). | spa |
dcterms.bibliographicCitation | A. K. Bowden et al., “Optical technologies for improving healthcare in low-resource settings: introduction to the feature issue,” Biomed. Opt. Express 11, 3091–3094 (2020). | spa |
dcterms.bibliographicCitation | S. R. Cherry, “Multimodality imaging: beyond PET/CT and SPECT/CT,” Semin. Nucl. Med. 39(5), 348–353 (2009). | spa |
dcterms.bibliographicCitation | T. L. Walker, R. Bamford, and M. Finch-Jones, “Intraoperative ultrasound for the colorectal surgeon: current trends and barriers,” ANZ J. Surg. 87(9), 671–676 (2017). | spa |
dcterms.bibliographicCitation | B. Li et al., “Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer,” Rev. Sci. Instrum. 85(5), 053703 (2014). | spa |
dcterms.bibliographicCitation | T. A. N. Hernes et al., “Computer-assisted 3d ultrasound-guided neurosurgery: technological contributions, including multimodal registration and advanced display, demonstrating future perspectives,” Int. J. Med. Rob. Comput. Assisted Surg. 2(1), 45–59 (2006). | spa |
dcterms.bibliographicCitation | F. Lindseth et al., “Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3d ultrasound,” Comput. Aided Surg. 8(2), 49–69 (2003). | spa |
dcterms.bibliographicCitation | H. Fatakdawala et al., “Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques,” Biomed. Opt. Express 4(9), 1724–1741 (2013). | spa |
dcterms.bibliographicCitation | Y. Li, J. Chen, and Z. Chen, “Multimodal intravascular imaging technology for characterization of atherosclerosis,” J. Innovative Opt. Health Sci. 13(1), 2030001 (2020). Meza et al.: Three-dimensional multimodal medical imaging system based on freehand ultrasound. . . Optical Engineering 054106-12 May 2021 • Vol. 60(5) Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 May 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use | spa |
dcterms.bibliographicCitation | C. Mela, F. Papay, and Y. Liu, “Novel multimodal, multiscale imaging system with augmented reality,” Diagnostics 11(3), 441 (2021) | spa |
dcterms.bibliographicCitation | D. M. McClatchy, III et al., “Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue,” Phys. Med. Biol. 62(23), 8983 (2017). | spa |
dcterms.bibliographicCitation | O. V. Olesen et al., “Motion tracking for medical imaging: a nonvisible structured light tracking approach,” IEEE Trans. Med. Imaging 31(1), 79–87 (2012). | spa |
dcterms.bibliographicCitation | L. Pino-Almero et al., “Quantification of topographic changes in the surface of back of young patients monitored for idiopathic scoliosis: correlation with radiographic variables,” J. Biomed. Opt. 21(11), 116001 (2016). | spa |
dcterms.bibliographicCitation | C.-W. J. Cheung et al., “Freehand three-dimensional ultrasound system for assessment of scoliosis,” J. Orthop. Translat. 3(3), 123–133 (2015). | spa |
dcterms.bibliographicCitation | R. Vairavan et al., “A brief on breast carcinoma and deliberation on current non-invasive imaging techniques for detection,” Curr. Med. Imaging Rev. 13, 85–121 (2017). | spa |
dcterms.bibliographicCitation | F. Šroubek et al., “A computer-assisted system for handheld whole-breast ultrasonography,” Int. J. Comput. Assist. Radiol. Surg. 14(3), 509–516 (2019) | spa |
dcterms.bibliographicCitation | W. Norhaimi et al., “Breast surface variation phase map analysis with digital fringe projection,” Proc. SPIE 11197, 1119717 (2019). | spa |
dcterms.bibliographicCitation | S. Horvath et al., “Towards an ultrasound probe with vision: structured light to determine surface orientation,” Lect. Notes Comput. Sci. 7264, 58–64 (2011). | spa |
dcterms.bibliographicCitation | E. Basafa et al., “Visual tracking for multi-modality computer-assisted image guidance,” Proc. SPIE 10135, 101352S (2017). | spa |
dcterms.bibliographicCitation | S.-Y. Sun, M. Gilbertson, and B. W. Anthony, “Probe localization for freehand 3d ultrasound by tracking skin features,” Lect. Notes Comput. Sci. 8674, 365–372 (2014). | spa |
dcterms.bibliographicCitation | J. Wang et al., “Ultrasound tracking using probesight: camera pose estimation relative to external anatomy by inverse rendering of a prior high-resolution 3d surface map,” in IEEE Winter Conf. Appl. Comput. Vision, IEEE, pp. 825–833 (2017). | spa |
dcterms.bibliographicCitation | .-W. Hsurager, et al., “Comparison of freehand 3-d ultrasound calibration techniques using a stylus,” Ultrasound Med. Biol. 34(10), 1610–1621 (2008). | spa |
dcterms.bibliographicCitation | R. W. Prager et al., “Rapid calibration for 3-d freehand ultrasound,” Ultrasound Med. Biol. 24(6), 855–869 (1998). | spa |
dcterms.bibliographicCitation | L. Mercier et al., “A review of calibration techniques for freehand 3-d ultrasound systems,” Ultrasound Med. Biol. 31(4), 449–471 (2005). | spa |
dcterms.bibliographicCitation | F. Torres et al., “Image tracking and volume reconstruction of medical ultrasound,” Rev. mexicana ingeniera biomed. 33(2), 101–115 (2012). | spa |
dcterms.bibliographicCitation | L. Lu et al., “Motion induced error reduction methods for phase shifting profilometry: a review,” Opt. Lasers Eng. 141, 106573 (2021). | spa |
dcterms.bibliographicCitation | R. Juarez-Salazar et al., “Key concepts for phase-to-coordinate conversion in fringe projection systems,” Appl. Opt. 58(18), 4828–4834 (2019) | spa |
dcterms.bibliographicCitation | S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006) | spa |
dcterms.bibliographicCitation | Y. Hu et al., “Freehand ultrasound image simulation with spatially-conditioned generative adversarial networks,” Lect. Notes Comput. Sci. 10555, 105–115 (2017). | spa |
dcterms.bibliographicCitation | J. Meza et al., “A low-cost multi-modal medical imaging system with fringe projection profilometry and 3D freehand ultrasound,” Proc. SPIE 11330, 1133004 (2020). | spa |
dcterms.bibliographicCitation | J. Meza, L. A. Romero, and A. G. Marrugo, “Markerpose: robust real-time planar target tracking for accurate stereo pose estimation,” https://arxiv.org/abs/2105.00368 (2021). | spa |
dcterms.bibliographicCitation | D. Hu, D. DeTone, and T. Malisiewicz, “Deep ChArUco: dark ChArUco marker pose estimation,” in Proc. IEEE/CVF Conf. Comput. Vision and Pattern Recognit., pp. 8436–8444 (2019). | spa |
dcterms.bibliographicCitation | D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superpoint: self-supervised interest point detection and description,” in Proc. IEEE Conf. Comput. Vision and Pattern Recognit. Workshops, pp. 224–236 (2018). | spa |
dcterms.bibliographicCitation | Y. Sun, “Analysis for center deviation of circular target under perspective projection,” Eng. Comput. 36(7), 2403–2413 (2019). Meza et al.: Three-dimensional multimodal medical imaging system based on freehand ultrasound. . . Optical Engineering 054106-13 May 2021 • Vol. 60(5) Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 21 May 2021 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use | spa |
dcterms.bibliographicCitation | P.-W. Hsu et al., “Freehand 3D ultrasound calibration: a review,” in Advanced Imaging in Biology and Medicine, C. W. Sensen and B. Hallgrímsson, eds., pp. 47–84, Springer, Berlin, Heidelberg (2009). | spa |
dcterms.bibliographicCitation | Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). | spa |
dcterms.bibliographicCitation | S. Zhang, High-Speed 3D Imaging with Digital Fringe Projection Techniques, CRC Press (2016). | spa |
dcterms.bibliographicCitation | . Lindseth et al., “Probe calibration for freehand 3-d ultrasound,” Ultrasound Med. Biol. 29(11), 1607–1623 (2003). | spa |
dcterms.bibliographicCitation | B. E. Schaafsma et al., “Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer,” Br. J. Surg. 100(8), 1037 (2013). | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | 10.1117/1.OE.60.5.054106 | |
dc.subject.keywords | Ultrasound | spa |
dc.subject.keywords | Structured-light | spa |
dc.subject.keywords | Three-dimension | spa |
dc.subject.keywords | Multimodal medical imaging | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.format.size | 14 páginas | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.