Mostrar el registro sencillo del ítem
Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand
dc.contributor.author | Chirinos, Juan | |
dc.contributor.author | Ibarra, Darmenia | |
dc.contributor.author | Morillo, Ángel | |
dc.contributor.author | Llovera, Ligia | |
dc.contributor.author | González, Teresa | |
dc.contributor.author | Zárraga, Jeannette | |
dc.contributor.author | Larreal, Oswaldo | |
dc.contributor.author | Guerra, Mayamarú | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2021-08-06T12:29:17Z | |
dc.date.available | 2021-08-06T12:29:17Z | |
dc.date.issued | 2021-04-24 | |
dc.date.submitted | 2021-08-05 | |
dc.identifier.citation | Juan Chirinos, Darmenia Ibarra, Ángel Morillo, Ligia Llovera, Teresa González, Jeannette Zárraga, Oswaldo Larreal, Mayamarú Guerra, Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bis-benzimidazole ligand, Polyhedron, Volume 203, 2021, 115232, ISSN 0277-5387, https://doi.org/10.1016/j.poly.2021.115232. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10355 | |
dc.description.abstract | Transition metal complexes of Co(II), Cu(II), and Fe(II) bearing a rigid symmetrical 2,20 -(1,2-phenylene)bis (1H-benzimidazole) ligand, PhBIm2, were synthesized and fully characterized by ESI-MS, FT-IR, 1 H NMR (for paramagnetic species), UV–Vis spectroscopy and microanalytical techniques. Besides the cobalt complex was subject of X-ray structural analysis. The molecular crystal structure of the PhBIm2Co(II)Cl2 complex revealed the metal center in a pseudo-tetrahedral environment with not significant lengthening or compressing of the bonds in the PhBIm2 framework upon chelation of the ligand. All complexes catalyze the aerobic oxidation of o-catechol to o-quinone under mild conditions. The results show that the oxidation rate depends on the electronic stabilizing effect to the metal center rather than the steric hindrance of the ligand. Kinetic parameters (Vmax, kcat, KM) were estimated by mean of the Michaelis–Menten model and Lineweaver–Burk plot. Catechol oxidation rates of complexes 2–4 are in the same order of magnitudes of mononuclear and dinuclear Cu(II) complexes bearing imidazole-based ligands but lower than observed for the catecholase enzyme | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Polyhedron, Volume 203, 2021. | spa |
dc.title | Synthesis, characterization and catecholase biomimetic activity of novel cobalt(II), copper(II), and iron(II) complexes bearing phenylene-bisbenzimidazole ligand | spa |
dcterms.bibliographicCitation | B. Kaim, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley, 1994. | spa |
dcterms.bibliographicCitation | T. Klabunde, C. Eicken, J.C. Sacchettini, B. Krebs, Crystal structure of a plant catechol oxidase containing a dicopper center, Nat. Struct. Biol. 5 (1998) 1084– 1090. | spa |
dcterms.bibliographicCitation | M. Boice, F. Borcheta, A. Cunningham, J. Trent, Cosmestic compositions containing quinones and their topical use on skin and hair, US20180116928A1. (2018). | spa |
dcterms.bibliographicCitation | T. Deming, Y. Miaoer, Synthesis and crosslinking of catechol containing copolypeptides, USOO6506577B1. (2003). | spa |
dcterms.bibliographicCitation | G. Maier, C. Bernt, A. Butler, Catechol oxidation: Considerations in the design of wet adhesive materials, Biomater. Sci. 6 (2018) 332–339, https://doi.org/ 10.1039/c7bm00884h. | spa |
dcterms.bibliographicCitation | J. Yang, M. Stuart, M. Kamperman, Jack of all trades: Versatile catechol crosslinking mechanisms, Chem. Soc. Rev. 43 (2014) 8271–8298, https://doi. org/10.1039/c4cs00185k. | spa |
dcterms.bibliographicCitation | J. Bolton, T. Dunlap, Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects, Chem. Res. Toxicol. 30 (2017) 13–37, https://doi. org/10.1021/acs.chemrestox.6b00256. | spa |
dcterms.bibliographicCitation | B. Kim, D. Oh, S. Kim, J. Seo, D. Hwang, A. Masic, D. Han, H. Cha, Musselmimetic protein-based adhesive hydrogel, Biomacromol. 15 (2014) 1579– 1585, https://doi.org/10.1021/bm4017308. | spa |
dcterms.bibliographicCitation | R. Marion, N. Saleh, N. Le Poul, D. Floner, O. Lavastre, F. Geneste, Rate enhancement of the catechol oxidase activity of a series of biomimetic monocopper(ii) complexes by introduction of non-coordinating groups in Ntripodal ligands, New J. Chem. 36 (2012) 1828–1835, https://doi.org/10.1039/ c2nj40265c. | spa |
dcterms.bibliographicCitation | P. Wang, G. Yap, C. Riordan, Five-coordinate MII-semiquinonate (M = Fe, Mn, Co) complexes: Reactivity models of the catechol dioxygenases, Chem. Commun. 50 (2014) 5871–5873, https://doi.org/10.1039/c3cc49143a | spa |
dcterms.bibliographicCitation | E. Mentasti, E. Pelizzetti, Reactions between iron(III) and catechol (odihydroxybenzene). Part I. Equilibria and kinetics of complex formation in aqueous acid solution, J. Chem. Soc. Dalt. Trans. (1973) 2605–2608, https://doi. org/10.1039/DT9730002605. | spa |
dcterms.bibliographicCitation | P. Kamau, R. Jordan, Kinetic study of the oxidation of catechol by aqueous copper(II), Inorg. Chem. 41 (2002) 3076–3083, https://doi.org/10.1021/ ic010978c. | spa |
dcterms.bibliographicCitation | S. Dey, A. Mukherjee, The synthesis, characterization and catecholase activity of dinuclear cobalt(II/III) complexes of an O-donor rich Schiff base ligand, New J. Chem. 38 (2014) 4985–4995, https://doi.org/10.1039/c4nj00715h. | spa |
dcterms.bibliographicCitation | M. Das, B. Kumar, K.R. Tiwari, P. Mandal, D. Nayak, R. Ganguly, S. Mukhopadhyay, Investigation on chemical protease, nuclease and catecholase activity of two copper complexes with flexidentate Schiff base ligands, Inorg. Chim. Acta 469 (2018) 111–122, https://doi.org/10.1016/j. ica.2017.09.013. | spa |
dcterms.bibliographicCitation | A. Sarkar, A. Chakraborty, A. Adhikary, S. Maity, A. Mandal, D. Samanta, P. Ghosh, D. Das, Exploration of catecholase-like activity of a series of magnetically coupled transition metal complexes of Mn, Co and Ni: new insights into solution state behavior of Mn complex, Dalton Trans. 48 (2019) 14164–14177. | spa |
dcterms.bibliographicCitation | I.A. Koval, P. Gamez, C. Belle, K. Selmeczi, J. Reedijk, Synthetic models of the active site of catechol oxidase: mechanistic studies, Chem Soc Rev 35 (2006) 814–840, https://doi.org/10.1039/b516250p. | spa |
dcterms.bibliographicCitation | S.K. Dey, A. Mukherjee, Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies, Coord. Chem. Rev. 310 (2016) 80–115, https://doi.org/10.1016/j.ccr.2015.11.002. | spa |
dcterms.bibliographicCitation | L. Martins, E. Souza, T. Fernandez, B. De Souza, S. Rachinski, C. Pinheiro, R. Faria, A. Casellato, S. Machado, A. Mangrich, M. Scarpellini, Binuclear CuII Table 3 Kinetic parameters for aerobic oxidation of o-catechol to o-quinone with complexes 2–4. kcat 103 (s1 ) St Error KM (mM) St Error Vmax 103 (mM s1 ) St Error kcat/KM (M1 s 1 ) Ref. 2 6.10 0.73 118 21.3 6.10 21.3 0.0517 This work 3 1.57 0.13 110 9.9 1.57 9.9 0.014 This work 4 1.41 0.61 623 38.4 1.41 32.4 0.0023 This work a [CoL2]Cl 32.78 – 1.8 7.50x10-4 3.28 5.62x10-7 18.21 [55] b [Co3(OMe)4L2]ClO4 922 – 7.81 5.27x10-3 1.5 4.47x10-5 118.05 [56] c [Cu2(L)2(H2O)2] 866.67 – 4.3 – 104.6 – 201.55 [22] d CuLCl2 3.1 – 1.62 – – – 1.9 [9] e CuLCl2 60.1 – 0.28 – 1.30 – 214.64 [57] f CuLCl2 108.9 – 0.45 – 2.36 – 242 [57] h (L)FeIII(l-Ophenoxo)FeIII] 1.21 – 7.20 – – – 0.17 [58] a HL = (E)-2-((3-(2-hydroxyethylthio)propylimino)methyl)phenol; b H2L = N,N0 -dimethyl-N,N0 -bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine; c H2L = 2-[(2-hydroxy-5-R-benzyl)amino]cyclohexane-1-carboxylic acid; d L = 6-(((1H-Pyrazol-1-yl)methyl)(thiophen-2-ylmethyl)amino)hexan-1-ol; e L = [(2-(pyridyl-2-yl)ethyl)((1-methylimidazol-2-yl)methyl)]imine; f L = [(2-(pyridyl-2-yl)ethyl)((1-methylimidazol-2-yl)methyl)]amine; h L = [(bbpmp)(H2O)(Cl)FeIII(l-Ophenoxo)FeIII(H2O)(Cl)]Cl J. Chirinos, D. Ibarra, Á. Morillo et al. Polyhedron 203 (2021) 115232 6 complexes as catalysts for hydrocarbon and catechol oxidation reactions with hydrogen peroxide and molecular oxygen, J. Braz. Chem. Soc. 21 (2010) 1218– 1229, https://doi.org/10.1590/S0103-50532010000700009. | spa |
dcterms.bibliographicCitation | A. Ramadan, S. Shaban, M. Ibrahim, M. El-Hendawy, H. Eissa, S. Al-Harbi, Copper(II) complexes containing pyridine-based and phenolatebased systems: Synthesis, characterization, DFT study, biomimetic catalytic activity of catechol oxidase and phenoxazinone synthase, J. Chin. Chem. Soc. (2019) 1– 17, https://doi.org/10.1002/jccs.201900113. | spa |
dcterms.bibliographicCitation | M. Louloudi, K. Mitopoulou, E. Evaggelou, Y. Deligiannakis, N. Hadjiliadis, Homogeneous and heterogenized copper(II) complexes as catechol oxidation catalysts, J. Mol. Catal. A Chem. 198 (2003) 231–240, https://doi.org/10.1016/ S1381-1169(02)00692-1. | spa |
dcterms.bibliographicCitation | C. Belle, K. Selmeczi, S. Torelli, J.L. Pierre, Chemical tools for mechanistic studies related to catechol oxidase activity, Comptes Rendus Chim. 10 (2007) 271–283, https://doi.org/10.1016/j.crci.2006.10.007. | spa |
dcterms.bibliographicCitation | B. Sreenivasulu, F. Zhao, S. Gao, J.J. Vittal, Synthesis, structures and catecholase activity of a new series of dicopper(II) complexes of reduced Schiff base ligands, Eur. J. Inorg. Chem. (2006) 2656–2670, https://doi.org/10.1002/ ejic.200600022. | spa |
dcterms.bibliographicCitation | S. Sarkar, W.R. Lee, C.S. Hong, H.I. Lee, Tetrameric self-assembly of a Cu(II) complex containing schiff-base ligand and its unusually high catecholase-like activity, Bull. Korean Chem. Soc. 34 (2013) 2731–2736, https://doi.org/ 10.5012/bkcs.2013.34.9.2731 | spa |
dcterms.bibliographicCitation | D. Dey, S. Das, H. Yadav, A. Ranjani, L. Gyathri, S. Roy, P. Guin, D. Dhanasekaran, A. Choudhury, M. Abdulkader, B. Biswas, Design of a mononuclear copper(II)- phenanthroline complex: Catechol oxidation, DNA cleavage and antitumor properties, Polyhedron 106 (2016) 106–114, https://doi.org/10.1016/j. poly.2015.12.055. | spa |
dcterms.bibliographicCitation | B. Jacobsen, J. Chirinos, G. Vernon, Diene polymerisation, WO 2007/015074 Al. (2007). | spa |
dcterms.bibliographicCitation | J. Zi, M. Moszner, E. Kwaskowska-che, Reactions of the hexaaquarhodium (III) cation with bis(benzimidazol-2-ylmethyl) methylamine and PPh3: syntheses and properties of new hydrido- and carbonylrhodium complexes, Inorganica Chim. Acta. 357 (2004) 2483–2493, https://doi.org/10.1016/j.ica.2003.10.020. | spa |
dcterms.bibliographicCitation | R. Cariou, J. Chirinos, V. Gibson, G. Jacobsen, A. Tomov, G. Britovsek, A. White, The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene, Dalt. Trans. 39 (2010), https://doi.org/10.1039/c0dt00402b. | spa |
dcterms.bibliographicCitation | A. Tomov, J. Nobbs, J. Chirinos, P. Saini, R. Malinowski, S. Ho, C. Young, D. McGuinness, A. White, M. Elsegood, G. Britovsek, Alternating a-olefin distributions via single and double insertions in chromium-catalyzed ethylene oligomerization, Organometallics 36 (2017), https://doi.org/ 10.1021/acs.organomet.6b00671. | spa |
dcterms.bibliographicCitation | J. Braden, R. Cariou, J. Shabaker, R. Taylor, Rapid transfer hydrogenation of acetophenone using ruthenium catalysts bearing commercially available and readily accessible nitrogen and phosphorous donor ligands, Appl. Catal. A 570 (2019) 367–375, https://doi.org/10.1016/j.apcata.2018.11.031. | spa |
dcterms.bibliographicCitation | W. Yang, Y. Chen, W. Sun, Correlating cobalt net charges with catalytic activities of the 2-(Benzimidazolyl)-6-(1-aryliminoethyl) pyridylcobalt complexes toward ethylene polymerization, Macromol. React. Eng. 9 (2015) 473–479, https://doi.org/10.1002/mren.201400064. | spa |
dcterms.bibliographicCitation | P. Selvam, P. Radhika, S. Janagaraj, A. Kumar, Synthesis of novel 2-substituted benzimidazole derivatives as potential anti microbial agents, Research in Biotechnology 2 (2011) 50–57. | spa |
dcterms.bibliographicCitation | P. Mathur, Activation of peroxyl and molecular oxygen using bisbenzimidazole diamide copper (II) compounds, J. Chem. Sci. 118 (2006) 553–568, https://doi.org/10.1007/BF02703953 | spa |
dcterms.bibliographicCitation | C. Matthews S. Heath M. Elsegood W. Clegg A. Leese J. Lockhart Differential binding of a facultative tridentate ligand 4-(benzimidazol-2-yl)-3- thiabutanoic acid to Cu J. Chem. Soc., Dalt. Trans. (1998) 1973–1977 | spa |
dcterms.bibliographicCitation | C. Icsel, V. Yilmaz, S . Aydinlik, M. Aygun, New manganese(II), iron(II), cobalt(II), nickel(II) and copper(II) saccharinate complexes of 2,6-bis(2-benzimidazolyl) pyridine as potential anticancer agents, Eur. J. Med. Chem. (2020), https://doi. org/10.1016/j.ejmech.2020.112535. | spa |
dcterms.bibliographicCitation | R. Esteghamat-Panah, H. Hadadzadeh, H. Farrokhpour, J. Simpson, A. Abdolmaleki, F. Abyar, Synthesis, structure, DNA/protein binding, and cytotoxic activity of a rhodium(III) complex with 2,6-Bis(2-benzimidazolyl) pyridine, Eur. J. Med. Chem. 15 (2017) 658–971, https://doi.org/10.1016/j. ejmech.2016.11.005. | spa |
dcterms.bibliographicCitation | K. Mandal, Oxidase Studies of Substituted Catechols using Copper (II) Complex of Bis (2-benzimidazolylmethyl) ether, Int. J. Sci. Res. 3 (2014) 1303–1305. https://www.ijsr.net/archive/v3i7/MDIwMTQxMjgx.pdf. | spa |
dcterms.bibliographicCitation | A. Martínez, I.D. Membrillo, V. Ugalde-Saldívar, L. Gasque, Dinuclear copper complexes with imidazole derivative ligands: A theoretical study related to catechol oxidase activity, J. Phys. Chem. B. 116 (2012) 8038–8044, https://doi. org/10.1021/jp300444m. | spa |
dcterms.bibliographicCitation | E. Mijangos, J. Reedijkb, L. Gasque, Copper(II) complexes of a polydentate imidazole-based ligand. pH effect on magnetic coupling and catecholase activity, Dalton Trans. (2008) 1857–1863, https://doi.org/10.1039/B714283H. | spa |
dcterms.bibliographicCitation | L. Dudd, E. Venardou, E. Garcia-Verdugo, P. Licence, A. Blake, C. Wilson, M. Poliakoff, Synthesis of benzimidazoles in high-temperature water, Green Chem. 5 (2003) 187–192, https://doi.org/10.1039/b212394k. | spa |
dcterms.bibliographicCitation | D. Evans, Paramagnetic Susceptibility, etc., Paramagnetic Susceptibility, etc. 2003 400. The determination of the pararnagnetic susceptibility, J. Chem. Soc. 1959 (2003) 2003–2005. | spa |
dcterms.bibliographicCitation | Crystal Clear. Crystal Structure, RigakuMSC. Texas, USA, 2004, (n.d.). | spa |
dcterms.bibliographicCitation | G. Sheldrick, A short history of SHELX, Acta Crystallogr. Sect. A Found. Crystallogr. 64 (2008) 112–122, https://doi.org/10.1107/S0108767307043930. | spa |
dcterms.bibliographicCitation | G. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C Struct. Chem. 71 (2015) 3–8, https://doi.org/10.1107/S2053229614024218. | spa |
dcterms.bibliographicCitation | A. Spek, Single-crystal structure validation with the program PLATON, J. Appl. Crystallogr. 36 (2003) 7–13, https://doi.org/10.1107/S0021889802022112 | spa |
dcterms.bibliographicCitation | D. Dey, S. Das, H.R. Yadav, A. Ranjani, L. Gyathri, S. Roy, P.S. Guin, D. Dhanasekaran, A.R. Choudhury, M.A. Akbarsha, B. Biswas, Design of a mononuclear copper(II)-phenanthroline complex: Catechol oxidation, DNA cleavage and antitumor properties, Polyhedron 106 (2016) 106–114, https:// doi.org/10.1016/j.poly.2015.12.055. | spa |
dcterms.bibliographicCitation | Y. Toubi, R. Touzani, S. Radi, S. El Kadiri, Synthesis, characterization and catecholase activity of copper (II) complexes with bispyrazole tri-podal Ligands, J. Mater. Environ. Sci. 3 (2012) 328–341. | spa |
dcterms.bibliographicCitation | A. Lever, Inorganic electronic spectroscopy, 2nd edition., Elsevier, New York, 1984. | spa |
dcterms.bibliographicCitation | S. Satyanarayana, K. Nagasundara, Synthesis and spectral properties of the complexes of cobalt(II), nickel(II), copper (II), zinc(II), and cadmium(II) with 2- (Thiomethyl-20 -benzimidazolyl)-benzimidazole, Synth. React. Inorg. Met.-Org. Chem. 34 (2004) 883–895, https://doi.org/10.1081/SIM-120037514 | spa |
dcterms.bibliographicCitation | M. Amirnasr, A. Mahmoudkhani, A. Gorji, S. Dehghanpour, H. Bijanzadeh, Cobalt(II), nickel(II), and zinc(II) complexes with bidentate N,N-bis(bphenylcinnamaldehyde)-1,2-diiminoethane Schiff base: synthesis and structures, Polyhedron 21 (2002) 2733-2742.https://doi.org/10.1016/S0277- 5387(02)01277-9 | spa |
dcterms.bibliographicCitation | J. Scepaniak, T. Harris, C. Vogel, J. Sutter, K. Meyer, J. Smith, Spin crossover in a four-coordinate iron(II) complex, J. Am. Chem. Soc. 133 (2011) 3824–3827, https://doi.org/10.1021/ja2003473. | spa |
dcterms.bibliographicCitation | W. Geary, The use of conductivity measurements in organic solvents for the characterisation of coordination compounds, Coord. Chem. Rev. 7 (1971) 81– 122, https://doi.org/10.1016/S0010-8545(00)80009-0. | spa |
dcterms.bibliographicCitation | L. Michaelis, M. Menten, R. Goody, K. Johnson, Die kinetik der invertinwirkung (translated: The kinetics of invertase action), Biochemistry 50 (39) (2011) 8264–8269, https://doi.org/10.1021/bi201284u. | spa |
dcterms.bibliographicCitation | R. Roskoski, B. Ridge, H. Shoe, Michaelis-Menten Kinetics, Elsevier Inc., 2015. https://doi.org/10.1016/B978-0-12-801238-3.05143-6 | spa |
dcterms.bibliographicCitation | H. Lineweaver, D. Burk, B.H. Lineweaver, D. Burk, The determination of Enzyme Dissociation Constants, J. Am. Chem. Soc 56 (1934) 658–666, https://doi.org/ 10.1021/ja01318a036. | spa |
dcterms.bibliographicCitation | A. Ghosh, C. Purohit, R. Ghosh, Synthesis and structural characterization of a cobalt(III) complex with an (N, S, O) donor Schiff base ligand: Catechol oxidase and phenoxazinone synthase activities, Polyhedron 155 (2018) 194–201, https://doi.org/10.1016/j.poly.2018.08.021. | spa |
dcterms.bibliographicCitation | I. Ali, B. Mandal, R. Saha, R. Ghosh, M. Chandra Majee, D. Mondal, P. Mitra, D. Mandal, Mono and tri-nuclear cobalt(III) complexes with sterically constrained phenol based N2O2 ligand: Synthesis, structure and catechol oxidase activity, Polyhedron 180 (2020), https://doi.org/10.1016/j. poly.2020.114429 114429. | spa |
dcterms.bibliographicCitation | F. Ferre, J. Resende, J. Schultz, A. Mangrich, R. Faria, A. Rocha, M. Scarpellini, Catalytic promiscuity of mononuclear copper(II) complexes in mild conditions: Catechol and cyclohexane oxidations, Polyhedron 123 (2017) 293–304, https://doi.org/10.1016/j.poly.2016.11.045. | spa |
dcterms.bibliographicCitation | T. Camargo, F. Maia, C. Chaves, B. De Souza, A. Bortoluzzi, N. Castilho, T. Bortolotto, H. Terenzi, E.E. Castellano, W. Haase, Z. Tomkowicz, R. Peralta, A. Neves, Synthesis, characterization, hydrolase and catecholase activity of a dinuclear iron(III) complex: Catalytic promiscuity, J. Inorg. Biochem. 146 (2015) 77–88, | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.1016/j.poly.2021.115232 | |
dc.subject.keywords | Catechol | spa |
dc.subject.keywords | Quinone | spa |
dc.subject.keywords | 2,2′-(1,2-phenylene)bis(1H-benzimidazole) | spa |
dc.subject.keywords | Transition metal complexes | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.format.size | 7 páginas | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.