Mostrar el registro sencillo del ítem

dc.contributor.authorOcampo Batlle, Eric Alberto
dc.contributor.authorEscobar Palacio, José Carlos
dc.contributor.authorSilva Lora, Electo Eduardo
dc.contributor.authorDa Costa Bortoni, Edson
dc.contributor.authorHorta Nogueira, Luiz Augusto
dc.contributor.authorCarrillo Caballero, Gaylord Enrique
dc.contributor.authorAparecido Vitoriano Julio, Alisson
dc.contributor.authorCárdenas Escorcia, Yulineth
dc.coverage.spatialColombia
dc.date.accessioned2021-08-06T12:26:30Z
dc.date.available2021-08-06T12:26:30Z
dc.date.issued2021-05-26
dc.date.submitted2021-08-05
dc.identifier.citationEric Alberto Ocampo Batlle, Jose Carlos Escobar Palacio , Electo Eduardo Silva Lora , Edson Da Costa Bortoni , Luiz Augusto Horta Nogueira , Gaylord Enrique Carrillo Caballero , Alisson Aparecido Vitoriano Julio , Yulineth Cardenas Escorcia. Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane etanol. Journal of Cleaner Production. Volume 311, 15 August 2021, 127638. j.jclepro.2021.127638spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10353
dc.description.abstractThe key objective of this study was to evaluate and compare, within the concept of integrated biorefining, the potential environmental gains of the life cycle, economic feasibility and energy balance of the production of bioenergetics from palm and sugarcane. In this context, the research model developed in this work involved several assessment techniques; in terms of environmental assessment, the tool used was the Life Cycle Assessment (LCA) from the Well-To-Tank perspective, which is based on the LCA “cradle-to-gate” assignment method. The environmental assessment was performed using SimaPro v.8.0.3 software and the impacts were quantified using the IMPACT 2002+ method. On the other hand, energy performance evaluation was based on the 1st law indicators. Likewise, economic feasibility was based on the evaluation of the fixed capital investment index and the estimate of investment costs for the entire integrated system. Two different scenarios were proposed in order to compare and evaluate traditional systems with the integrated biorefinery. The first conversion scenario (baseline scenario) consisted of a traditional palm oil extraction plant in addition to an ethanol and sugar plant, concerning the use of fossil fuels in all stages of production. The second conversion scenario (improved scenario) explored the substitution of fossil energy sources as well as the energy recovery of residual biomass in more efficient energy conversion systems. The results indicated significant reductions of 29.5% and 29.1% in the global warming impact category when the baseline scenario was compared to the improved scenario. Additionally, the improved scenario achieved a reduction of 2.1 g CO2eq MJ− 1 (ethanol) and 2.61 g CO2eq MJ− 1 (biodiesel). On the other hand, the improved scenario presented better energy rates since it showed an increase of 3.82% in the global efficiency of the system and produced 106.32 kWh more per ton of processed raw material. Finally, when considering the Life Cycle Energy Efficiency, an increase of 83% was observed and in the case of the Renewability Factor showed an increase of 7.12 energy units. Integration is also economically feasible; however, it could be significantly improved through fiscal incentives founded on the reduction of fossil energy use, enhanced conversion yielding, and improvements in conversion technologies.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Cleaner Production. Volume 311, 2021.spa
dc.titleEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanolspa
dcterms.bibliographicCitationAditiya, H.B., Mahlia, T.M.I., Chong, W.T., Nur, H., Sebayang, A.H., 2016. Second generation bioethanol production: a critical review. Renew. Sustain. Energy Rev. 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015.spa
dcterms.bibliographicCitationAhmad, F.B., Zhang, Z., Doherty, W.O.S., O’Hara, I.M., 2019. The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renew. Sustain. Energy Rev. 109, 386–411. https://doi.org/10.1016/j. rser.2019.04.009.spa
dcterms.bibliographicCitationAlejos Altamirano, C.A., Yokoyama, L., de Medeiros, J.L., de Queiroz Fernandes Araújo, O., 2016. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment. Appl. Energy 184, 1246–1263. https://doi.org/10.1016/j.apenergy.2016.05.017.spa
dcterms.bibliographicCitationAmbat, I., Srivastava, V., Sillanp¨ a¨ a, M., 2018. Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew. Sustain. Energy Rev. 90, 356–369. https://doi.org/10.1016/j.rser.2018.03.069.spa
dcterms.bibliographicCitationANP, 2021. 77o Leil˜ ao de Biodiesel da ANP [WWW Document]. Agˆencia Nac. Petroleo, ´ Gas ´ Nat. e Biocombustíveis. URL. https://www.gov.br/anp/pt-br/assuntos/distribui cao-e-revenda/leiloes-biodiesel/leiloes-entregas-2021. (Accessed 3 March 2021).spa
dcterms.bibliographicCitationArcher, S.A., Murphy, R.J., Steinberger-Wilckens, R., 2018. Methodological analysis of palm oil biodiesel life cycle studies. Renew. Sustain. Energy Rev. 94, 694–704. https://doi.org/10.1016/j.rser.2018.05.066.spa
dcterms.bibliographicCitationAristizabal-Marulanda, ´ V., Solarte-Toro, J.C., Cardona Alzate, C.A., 2020. Economic and social assessment of biorefineries: the case of Coffee Cut-Stems (CCS) in Colombia. Bioresour. Technol. Rep. 9, 100397. https://doi.org/10.1016/j.biteb.2020.100397.spa
dcterms.bibliographicCitationAziz, N.I.H.A., Hanafiah, M.M., Gheewala, S.H., 2019. A review on life cycle assessment of biogas production: challenges and future perspectives in Malaysia. Biomass Bioenergy 122, 361–374. https://doi.org/10.1016/j.biombioe.2019.01.047. Fig. 15. Damage categories comparison of Bioelectricity BSc and IBSc scenarios. Table 10 Comparisons of the NER and RF index obtained in this study with others reported in the literature. Index This study Other studies BSc IBSc Ocampo Batlle et al. (2020) Palacio et al. (2018) Reno ´ et al. (2014) Souza et al. (2012) NER [MJout MJin − 1 ] 7.34 13.44 8.50 8.80 8.10 9.00 RF [MJout MJin − 1 ] 8.50 15.70 9.93 9.85 9.40 10.1 E.A. Ocampo Batlle et al. Journal of Cleaner Production 311 (2021) 127638 17spa
dcterms.bibliographicCitationBeaudry, G., Macklin, C., Roknich, E., Sears, L., Wiener, M., Gheewala, S.H., 2018. Greenhouse gas assessment of palm oil mill biorefinery in Thailand from a life cycle perspective. Biomass Convers. Bioref. 8, 43–58. https://doi.org/10.1007/s13399- 016-0233-7.spa
dcterms.bibliographicCitationBezergianni, S., Chrysikou, L.P., 2020. Application of Life-Cycle Assessment in Biorefineries, Waste Biorefinery. Elsevier B.V. https://doi.org/10.1016/b978-0-12- 818228-4.00017-4spa
dcterms.bibliographicCitationBooneimsri, P., Kubaha, K., Chullabodhi, C., 2018. Increasing power generation with enhanced cogeneration using waste energy in palm oil mills. Energy Sci. Eng. 6, 154–173. https://doi.org/10.1002/ese3.196.spa
dcterms.bibliographicCitationBrand˜ ao, F., Schoneveld, G., 2015. The State of Oil Palm Development in the Brazilian Amazon: Trends, Value Chain Dynamics, and Business Models (No. 198). https://doi. org/10.17528/cifor/005861. Bogor.spa
dcterms.bibliographicCitationBressanin, J.M., Klein, B.C., Chagas, M.F., Watanabe, M.D.B., Sampaio, I.L. de M., Bonomi, A., Morais, E.R. de, Cavalett, O., 2020. Techno-economic and environmental assessment of biomass Gasification and fischer–tropsch synthesis integrated to sugarcane biorefineries. Energies 13, 4576. https://doi.org/10.3390/ en13174576.spa
dcterms.bibliographicCitationBuˇsi´c, A., Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Santek, ˇ M.I., Komes, D., Novak, S., Santek, ˇ B., 2018. Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol. Biotechnol. 56, 289–311. https://doi.org/10.17113/ftb.56.03.18.5546.spa
dcterms.bibliographicCitationCCEE, 2021. Informaçao ˜ Do Leil˜ ao Dinˆ animo [WWW Document]. Camara ˆ Comer. Energ. El´etrica. URL. https://www.ccee.org.br/. (Accessed 3 March 2021).spa
dcterms.bibliographicCitationCEPEA, 2021. Indicador mensal ethanol hidratado CEPEA/ESALQ combustível - estado de S˜ ao paulo [WWW Document]. Cent. Estud. Avançados em Econ. Apl. URL. http ://cepea.esalq.usp.br/etanol/. (Accessed 3 March 2021).spa
dcterms.bibliographicCitationChemical Engineering Magazine, 2019. Current Economic Trends CEPCI [WWW Document]. URL. https://www.chemengonline.com/2019-chemical-engineering -plant-cost-index-annual-average/. (Accessed 3 March 2021). Chen, H., 2015. Lignocellulose Biorefinery Engineering, first ed.spa
dcterms.bibliographicCitationChen, J., Bian, X., Rapp, G., Lang, J., Montoya, A., Trethowan, R., Bouyssiere, B., Portha, J.-F., Jaubert, J.-N., Pratt, P., Coniglio, L., 2019. From ethyl biodiesel to biolubricants: options for an Indian mustard integrated biorefinery toward a green and circular economy. Ind. Crop. Prod. 137, 597–614. https://doi.org/10.1016/j. indcrop.2019.04.041.spa
dcterms.bibliographicCitationChrysikou, L.P., Bezergianni, S., Kiparissides, C., 2018. Environmental analysis of a lignocellulosic-based biorefinery producing bioethanol and high-added value chemicals. Sustain. Energy Technol. Assess. 28, 103–109. https://doi.org/10.1016/j. seta.2018.06.010.spa
dcterms.bibliographicCitationConab, 2018. Acompanhamento da Safra Brasileira da Cana-de-açúcar. https://www. conab.gov.br/info-agro/safras/cana.spa
dcterms.bibliographicCitationCorona, A., Parajuli, R., Ambye-Jensen, M., Hauschild, M.Z., Birkved, M., 2018. Environmental screening of potential biomass for green biorefinery conversion. J. Clean. Prod. 189, 344–357. https://doi.org/10.1016/j.jclepro.2018.03.316.spa
dcterms.bibliographicCitationCortez, L.A.B., Nigro, F.E.B., Nogueira, L.A.H., Nassar, A.M., Cantarella, H., Moraes, M.A. F.D., Leal, R.L.V., Franco, T.T., Schuchardt, U.F., Baldassin Junior, R., 2015. Perspectives for sustainable aviation biofuels in Brazil. Int. J. Aerosp. Eng. 1–12 https://doi.org/10.1155/2015/264898.spa
dcterms.bibliographicCitationDebnath, D., Babu, S.C., 2019. Biofuels, Bioenergy and Food Security, first ed. Elsevier. https://doi.org/10.1016/C2015-0-00851-6.spa
dcterms.bibliographicCitationDemichelis, F., Laghezza, M., Chiappero, M., Fiore, S., 2020. Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass. J. Clean. Prod. 277, 124111. https://doi.org/10.1016/j.jclepro.2020.124111.spa
dcterms.bibliographicCitationDias, M.O. de S., Maciel Filho, R., Mantelatto, P.E., Cavalett, O., Rossell, C.E.V., Bonomi, A., Leal, M.R.L.V., 2015. Sugarcane processing for ethanol and sugar in Brazil. Environ. Dev. 15, 35–51. https://doi.org/10.1016/j.envdev.2015.03.004.spa
dcterms.bibliographicCitationEPE, 2019. Analise ´ de conjuntura dos biocombustíveis: ano 2019 [WWW Document]. Empres. Pesqui. Energ´etica. URL. https://www.epe.gov.br/pt/publicacoes-dados -abertos/publicacoes/analise-de-conjuntura-dos-biocombustiveis-2019. (Accessed 3 March 2021).spa
dcterms.bibliographicCitationFarzad, S., Mandegari, M.A., Guo, M., Haigh, K.F., Shah, N., Gorgens, ¨ J.F., 2017. Multiproduct biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnol. Biofuels 10, 87. https://doi.org/10.1186/s13068-017-0761-9.spa
dcterms.bibliographicCitationFritsche, U.R., Diaz-Chavez, R., de la Rúa, C., Gabriel, B., Perrin, A., 2018. Sustainability of bioenergy. In: The Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy, pp. 225–296. https://doi.org/10.1016/ B978-0-12-813056-8.00006-6.spa
dcterms.bibliographicCitationFurtado Júnior, J.C., Palacio, J.C.E., Leme, R.C., Lora, E.E.S., da Costa, J.E.L., Reyes, A. M.M., del Olmo, O.A., 2020. Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry. Appl. Energy 259, 113092. https://doi.org/ 10.1016/j.apenergy.2019.04.088.spa
dcterms.bibliographicCitationGarcia-Nunez, J.A., Rodriguez, D.T., Fontanilla, C.A., Ramirez, N.E., Silva Lora, E.E., Frear, C.S., Stockle, C., Amonette, J., Garcia-Perez, M., 2016. Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass Bioenergy 95, 310–329. https://doi.org/10.1016/j.biombioe.2016.05.020.spa
dcterms.bibliographicCitationGebremariam, S.N., Marchetti, J.M., 2018. Economics of biodiesel production: Review. Energy Convers. Manag. 168, 74–84. https://doi.org/10.1016/j. enconman.2018.05.002.spa
dcterms.bibliographicCitationGikonyo, B., 2015. Efficiency and Sustainability in Biofuel Production, first ed. Apple Academic Press. https://doi.org/10.1201/b18466. Hadidi, L.A., Altamimi, Q.M., 2019. 3E (energy, economic, and environmental) analysis of waste management strategies. In: Advances in Waste-To-Energy Technologies. CRC Press, p. 13.spa
dcterms.bibliographicCitationHarris, Z.M., Milner, S., Taylor, G., 2018. Biogenic carbon—capture and sequestration. In: Greenhouse Gases Balances of Bioenergy Systems. Elsevier, pp. 55–76. https:// doi.org/10.1016/B978-0-08-101036-5.00005-7.spa
dcterms.bibliographicCitationHingsamer, M., Jungmeier, G., 2018. Biorefineries, the Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813056-8.00005-4.spa
dcterms.bibliographicCitationHosseini-Fashami, F., Motevali, A., Nabavi-Pelesaraei, A., Hashemi, S.J., Chau, K. wing, 2019. Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production. Renew. Sustain. Energy Rev. 116, 109411. https://doi.org/ 10.1016/j.rser.2019.109411. IEA Bioenergy, 2019. Task 42. Bioref. Fut. BioEcon. 1–23. ISO 14040, 2006, 2006. Environmental management - Life Cycle Assessment - Principles and Framework.spa
dcterms.bibliographicCitationJolliet, O., Margni, M., Charles, R., Humbert, S., Payet, J., Rebitzer, G., Rosenbaum, R., 2003. Impact 2002+: a new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 8, 324–330. https://doi.org/10.1007/BF02978505.spa
dcterms.bibliographicCitationJulio, A.A.V., Batlle, E.A.O., Rodriguez, C.J.C., Palacio, J.C.E., 2021. Exergoeconomic and Environmental Analysis of a Palm Oil Biorefinery for the Production of Bio-Jet Fuel, vol. 27. Waste and Biomass Valorization Pag. https://doi.org/10.1007/s12649- 021-01404-2.spa
dcterms.bibliographicCitationKaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., Chau, K. wing, 2019a. Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy 181, 1298–1320. https:// doi.org/10.1016/j.energy.2019.06.002.spa
dcterms.bibliographicCitationKaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., Chau, K. wing, 2019b. Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Sci. Total Environ. 664, 1005–1019. https://doi.org/10.1016/j.scitotenv.2019.02.004.spa
dcterms.bibliographicCitationKaushik, L.K., Muthukumar, P., 2018. Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner. Appl. Therm. Eng. 133, 316–326. https://doi.org/10.1016/j. applthermaleng.2018.01.050spa
dcterms.bibliographicCitationKhanali, M., Akram, A., Behzadi, J., Mostashari-Rad, F., Saber, Z., Chau, K. wing, NabaviPelesaraei, A., 2021. Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm. Appl. Energy 284, 116342. https://doi.org/10.1016/j.apenergy.2020.116342spa
dcterms.bibliographicCitationKhoshnevisan, B., Tabatabaei, M., Tsapekos, P., Rafiee, S., Aghbashlo, M., Lindeneg, S., Angelidaki, I., 2020. Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid. Renew. Sustain. Energy Rev. 117, 109493. https://doi.org/ 10.1016/j.rser.2019.109493.spa
dcterms.bibliographicCitationKlein, B.C., Chagas, M.F., Junqueira, T.L., Rezende, M.C.A.F., Cardoso, T. de F., Cavalett, O., Bonomi, A., 2018. Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries. Appl. Energy 209, 290–305. https://doi.org/10.1016/j.apenergy.2017.10.079. Lai, O.-M., Tan, C.-P., Akoh, C.C., 2012. Palm Oil: Production, Processing, Characterization, and Uses, first ed. Elsevier, New York.spa
dcterms.bibliographicCitationLAPIG, 2020. Atlas das Pastagens Brasileiras [WWW Document]. Laboratorio ´ Process. Imgens e Geoprocessamento. URL. https://pastagem.org/atlas/map. (Accessed 28 July 2020).spa
dcterms.bibliographicCitationLeal, M.R.L.V., Galdos, M.V., Scarpare, F.V., Seabra, J.E.A., Walter, A., Oliveira, C.O.F., 2013. Sugarcane straw availability, quality, recovery and energy use: a literature review. Biomass Bioenergy 53, 11–19. https://doi.org/10.1016/j. biombioe.2013.03.007.spa
dcterms.bibliographicCitationLee, K.T., Ofori-Boateng, C., 2013. Sustainability of Biofuel Production from Oil Palm Biomass, first ed. https://doi.org/10.1007/978-981-4451-70-3 Malaysia.spa
dcterms.bibliographicCitationMaham, S.G., Rahimi, A., Smith, D.L., 2018. Environmental assessment of the essential oils produced from dragonhead (Dracocephalum moldavica L.) in conventional and organic farms with different irrigation rates. J. Clean. Prod. 204, 1070–1086. https://doi.org/10.1016/j.jclepro.2018.08.348.spa
dcterms.bibliographicCitationMahath, C.S., Mophin Kani, K., Dubey, B., 2019. Gate-to-gate environmental impacts of dairy processing products in Thiruvananthapuram, India. Resour. Conserv. Recycl. 141, 40–53. https://doi.org/10.1016/j.resconrec.2018.09.023.spa
dcterms.bibliographicCitationManochio, C., Andrade, B., Rodriguez, R., Moraes, B., 2017. Ethanol from biomass: a comparative overview. Renew. Sustain. Energy Rev. 80, 743–755. https://doi.org/ 10.1016/j.rser.2017.05.063spa
dcterms.bibliographicCitationMat Yasin, M.H., Mamat, R., Najafi, G., Ali, O.M., Yusop, A.F., Ali, M.H., 2017. Potentials of palm oil as new feedstock oil for a global alternative fuel: a review. Renew. Sustain. Energy Rev. 79, 1034–1049. https://doi.org/10.1016/j.rser.2017.05.186.spa
dcterms.bibliographicCitationMata, T.M., Martins, A.A., Sikdar, S.K., Costa, C.A.V., 2011. Sustainability considerations of biodiesel based on supply chain analysis. Clean Technol. Environ. Policy 13, 655–671. https://doi.org/10.1007/s10098-010-0346-9.spa
dcterms.bibliographicCitationMohammadi, F., Roedl, A., Abdoli, M.A., Amidpour, M., Vahidi, H., 2020. Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry. Renew. Energy 145, 1870–1882. https://doi.org/10.1016/j.renene.2019.06.023.spa
dcterms.bibliographicCitationMonteiro, H., Moura, B., Iten, M., Mata, T.M., Martins, A.A., 2020. Life cycle energy and carbon emissions of ergosterol from mushroom residues. Energy Rep. 6, 333–339. https://doi.org/10.1016/j.egyr.2020.11.157.spa
dcterms.bibliographicCitationMostashari-Rad, F., Ghasemi-Mobtaker, H., Taki, M., Ghahderijani, M., Kaab, A., Chau, K. wing, Nabavi-Pelesaraei, A., 2021. Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks. J. Clean. Prod. 278, 123788. https://doi.org/10.1016/j. jclepro.2020.123788spa
dcterms.bibliographicCitationMunasinghe, M., Jayasinghe, P., Deraniyagala, Y., Matlaba, V.J., Santos, J.F. dos, Maneschy, M.C., Mota, J.A., 2019. Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social E.A. Ocampo Batlle et al. Journal of Cleaner Production 311 (2021) 127638 18 sustainability. Sustain. Prod. Consum. 17, 161–175. https://doi.org/10.1016/j. spc.2018.10.001.spa
dcterms.bibliographicCitationNabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., Chau, K. wing, 2017. Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - a case study in Tehran Metropolis of Iran. J. Clean. Prod. 148, 427–440. https://doi.org/10.1016/j.jclepro.2017.01.172.spa
dcterms.bibliographicCitationNieder-Heitmann, M., Haigh, K.F., Gorgens, ¨ J.F., 2019. Life cycle assessment and multicriteria analysis of sugarcane biorefinery scenarios: finding a sustainable solution for the South African sugar industry. J. Clean. Prod. 239 https://doi.org/10.1016/j. jclepro.2019.118039.spa
dcterms.bibliographicCitationNogueira, L.A.H., Souza, G.M., Cortez, L.A.B., de Brito Cruz, C.H., 2020. Biofuels for transport. In: Future Energy: Improved, Sustainable and Clean Options for Our Planet. Elsevier Ltd, pp. 173–197. https://doi.org/10.1016/B978-0-08-102886- 5.00009-8.spa
dcterms.bibliographicCitationO’Hara, I.M., Mundree, S.G., 2016. Sugarcane-based biofuels and bioproducts. In: Sugarcane-based Biofuels and Bioproducts, first ed. https://doi.org/10.1002/ 9781118719862 New Jersey.spa
dcterms.bibliographicCitationOcampo Batlle, E.A., Castillo Santiago, Y., Venturini, O.J., Escobar Palacio, J.C., Silva Lora, E.E., Yepes Maya, D.M., Albis Arrieta, A.R., 2020. Thermodynamic and environmental assessment of different scenarios for the insertion of pyrolysis technology in palm oil biorefineries. J. Clean. Prod. 250, 119544. https://doi.org/ 10.1016/j.jclepro.2019.119544.spa
dcterms.bibliographicCitationOhimain, E.I., Izah, S.C., 2017. A review of biogas production from palm oil mill effluents using different configurations of bioreactors. Renew. Sustain. Energy Rev. 70, 242–253. https://doi.org/10.1016/j.rser.2016.11.221. Palacio, J.C.E., Ocampo, E.A., Reno, ´ M.L.G., Reyes, A.M.M., Souza, G.F. de, Olmo, O.A.A. del, Lora, E.E.S., 2018. Exergy and environmental analysis of a polygeneration system of alcohol industry. Waste Biomass Valoriz. 16. https://doi.org/10.1007/ s12649-018-0509-1.spa
dcterms.bibliographicCitationPereira, L.G., Cavalett, O., Bonomi, A., Zhang, Y., Warner, E., Chum, H.L., 2019. Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat. Renew. Sustain. Energy Rev. 110, 1–12. https://doi.org/10.1016/j.rser.2019.04.043.spa
dcterms.bibliographicCitationPereira, L.G., Chagas, M.F., Dias, M.O.S., Cavalett, O., Bonomi, A., 2015. Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. J. Clean. Prod. 96, 557–568. https://doi.org/10.1016/j.jclepro.2014.01.059. Pereira, S. de S., Seabra, J.E.A., Nogueira, L.A.H., 2018. Feedstocks for biodiesel production: Brazilian and global perspectives. Biofuels 9, 455–478. https://doi.org/ 10.1080/17597269.2017.1278931spa
dcterms.bibliographicCitationQueiroz, A.G., França, L., Ponte, M.X., 2012. The life cycle assessment of biodiesel from palm oil (“ dendˆe”) in the Amazon. Biomass Bioenergy 36, 50–59. https://doi.org/ 10.1016/j.biombioe.2011.10.007.spa
dcterms.bibliographicCitationRamirez-Contreras, N.E., Munar-Florez, D.A., Garcia-Nunez, ˜ J.A., MosqueraMontoya, M., Faaij, A.P.C., 2020. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 258, 120757. https://doi.org/10.1016/j.jclepro.2020.120757.spa
dcterms.bibliographicCitationREN21, 2018. Renewables 2018: global status report, 978-3-9818107-0-7. Reno, ´ M.L.G., Olmo, O.A. del, Palacio, J.C.E., Lora, E.E.S., Venturini, O.J., 2014. Sugarcane biorefineries: case studies applied to the Brazilian sugar–alcohol industry. Energy Convers. Manag. 86, 981–991. https://doi.org/10.1016/j. enconman.2014.06.031.spa
dcterms.bibliographicCitationRocha, M.H., Capaz, R.S., Lora, E.E.S., Nogueira, L.A.H., Leme, M.M.V., Reno, ´ M.L.G., Olmo, O.A. Del, 2014. Life cycle assessment (LCA) for biofuels in Brazilian conditions: a meta-analysis. Renew. Sustain. Energy Rev. 37, 435–459. https://doi. org/10.1016/j.rser.2014.05.036.spa
dcterms.bibliographicCitationSaber, Z., Esmaeili, M., Pirdashti, H., Motevali, A., Nabavi-Pelesaraei, A., 2020. Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production. J. Clean. Prod. 263, 121529. https:// doi.org/10.1016/j.jclepro.2020.121529.spa
dcterms.bibliographicCitationSalina, F.H., de Almeida, I.A., Bittencourt, F.R., 2020. RenovaBio opportunities and biofuels outlook in Brazil. In: Renewable Energy and Sustainable Buildings. Springer, Cham, pp. 391–399. https://doi.org/10.1007/978-3-030-18488-9_30.spa
dcterms.bibliographicCitationSantos, F., Bor´em, A., Caldas, C., 2015. Sugarcane: Agricultural Production, Bioenergy and Ethanol, first ed. Elsevier. Academic Press, Brasilia.spa
dcterms.bibliographicCitationSaravanan, A.P., Pugazhendhi, A., Mathimani, T., 2020. A comprehensive assessment of biofuel policies in the BRICS nations: implementation, blending target and gaps. Fuel 272, 117635. https://doi.org/10.1016/j.fuel.2020.117635.spa
dcterms.bibliographicCitationSharvini, S.R., Noor, Z.Z., Chong, C.S., Stringer, L.C., Glew, D., 2020. Energy generation from palm oil mill effluent: a life cycle assessment of two biogas technologies. Energy 191, 116513. https://doi.org/10.1016/j.energy.2019.116513.spa
dcterms.bibliographicCitationSilva, W.L.G. da, Souza, P.T. de, Shimamoto, G.G., Tubino, M., 2015. Separation of the Glycerol-biodiesel phases in an ethyl transesterification synthetic route using water. J. Braz. Chem. Soc. https://doi.org/10.5935/0103-5053.20150147.spa
dcterms.bibliographicCitationSingh, A., Pant, D., Olsen, S.I., 2013. Life Cycle Assessment of Renewable Energy Sources. Springer London. https://doi.org/10.1007/978-1-4471-5364-1spa
dcterms.bibliographicCitationSitepu, E.K., Heimann, K., Raston, C.L., Zhang, W., 2020. Critical evaluation of process parameters for direct biodiesel production from diverse feedstock. Renew. Sustain. Energy Rev. 123, 109762. https://doi.org/10.1016/j.rser.2020.109762.spa
dcterms.bibliographicCitationSouza, C.C. De, Leandro, J.P., Francisco, J., Frainer, D.M., Castel˜ ao, R.A., 2018. Cogeneration of electricity in sugar-alcohol plant : perspectives and viability. Renew. Sustain. Energy Rev. 91, 832–837. https://doi.org/10.1016/j.rser.2018.04.047.spa
dcterms.bibliographicCitationSouza, S.P., de Avila, ´ M.T., Pacca, S., 2012. Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass Bioenergy 44, 70–79. https://doi. org/10.1016/j.biombioe.2012.04.018.spa
dcterms.bibliographicCitationSpeight, J.G., 2020. A Biorefinery, the Refinery of the Future. https://doi.org/10.1016/ b978-0-12-816994-0.00014-2.spa
dcterms.bibliographicCitationSuwanmanee, U., Bangjang, T., Kaewchada, A., Jaree, A., 2020. Greenhouse gas emissions and energy assessment of modified diesohol using cashew nut shell liquid and biodiesel as additives. Sustain. Prod. Consum. 24, 232–253. https://doi.org/ 10.1016/j.spc.2020.06.009spa
dcterms.bibliographicCitationTan, Y.D., Lim, J.S., Wan Alwi, S.R., 2020. Multi-objective optimal design for integrated palm oil mill complex with consideration of effluent elimination. Energy 202. https://doi.org/10.1016/j.energy.2020.117767.spa
dcterms.bibliographicCitationTsiropoulos, I., Faaij, A.P.C., Seabra, J.E.A., 2014. In: Life Cycle Assessment of Sugarcane Ethanol Production in India in Comparison to Brazil. Springer, pp. 1049–1067. https://doi.org/10.1007/s11367-014-0714-5.spa
dcterms.bibliographicCitationU.S. EIA, 2016. Capital Cost Estimates for Utility Scale Electricity Generating Plants. U.S. Energy Information Administration, 2018. International Energy Outlook 2018, Energy Information Administration - EIA. Washintong, DC. https://www.eia. gov/outlooks/archive/ieo18/.spa
dcterms.bibliographicCitationVaskan, P., Pachon, ´ E.R., Gnansounou, E., 2018. Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil. J. Clean. Prod. 172, 3655–3668. https://doi.org/10.1016/j.jclepro.2017.07.218.spa
dcterms.bibliographicCitationVenturini, O.J., Júnior, J.C.F., Palacio, J.C.E., Batlle, E.A.O., Carvalho, M., Lora, E.E.S., 2020. Indicators for sustainability assessment of biofuels: economic, environmental, social, and technological dimensions. In: Biofuels for a More Sustainable Future. Elsevier, pp. 73–113. https://doi.org/10.1016/B978-0-12-815581-3.00004-X.spa
dcterms.bibliographicCitationVerma, P., Sharma, M.P., Dwivedi, G., 2016. Impact of alcohol on biodiesel production and properties. Renew. Sustain. Energy Rev. 56, 319–333. https://doi.org/10.1016/ j.rser.2015.11.048.spa
dcterms.bibliographicCitationVerma, S., Kuila, A., 2020. Principles of sustainable biorefinery. In: Biorefinery Production Technologies for Chemicals and Energy. Wiley, pp. 1–13. https://doi. org/10.1002/9781119593065.ch1spa
dcterms.bibliographicCitationVieira da Silva, M.A., Lagnier Gil Ferreira, B., da Costa Marques, L.G., Lamare Soares Murta, A., Vasconcelos de Freitas, M.A., 2017. Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes. Fuel 194, 144–156. https://doi.org/10.1016/j. fuel.2016.12.084.spa
dcterms.bibliographicCitationWertz, J.-L., B´edu´e, O., 2013. Lignocellulosic Biorefineries, first ed. CRC Press. EFPL Press. https://doi.org/10.1201/b15443-4.spa
dcterms.bibliographicCitationYusoff, M.F.M., Xu, X., Guo, Z., 2014. Comparison of fatty acid methyl and ethyl Esters as biodiesel base stock: a review on processing and production requirements. J. Am. Oil Chem. Soc. 91, 525–531. https://doi.org/10.1007/s11746-014-2443-0.spa
dcterms.bibliographicCitationZivkovi ˇ ´c, S.B., Veljkovi, M.V., Bankovi, I.B., Krsti, I.M., Konstantinovi, S., Ili, S.B., Avramovi, J.M., Stamenkovi, O.S., 2017. Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renew. Sustain. Energy Rev. 79, 222–247spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doij.jclepro.2021.127638
dc.subject.keywordsIntegrated biofuel productionspa
dc.subject.keywordsBiorefineryspa
dc.subject.keywordsEnergy performancespa
dc.subject.keywordsSustainabilityspa
dc.subject.keywordsEnvironmental impactsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.format.size18 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.