Mostrar el registro sencillo del ítem

dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.contributor.authorVargas, Raúl
dc.contributor.authorRomero, Lenny A
dc.contributor.authorZhang, Song
dc.coverage.spatialColombia
dc.date.accessioned2021-08-03T19:16:52Z
dc.date.available2021-08-03T19:16:52Z
dc.date.issued2021-05-24
dc.date.submitted2021-08-03
dc.identifier.citationAndres G. Marrugo, Raul Vargas, Lenny A. Romero, and Song Zhang, "Method for large-scale structured-light system calibration," Opt. Express 29, 17316-17329 (2021)spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10352
dc.description.abstractWe propose a multi-stage calibration method for increasing the overall accuracy of a large-scale structured light system by leveraging the conventional stereo calibration approach using a pinhole model. We first calibrate the intrinsic parameters at a near distance and then the extrinsic parameters with a low-cost large-calibration target at the designed measurement distance. Finally, we estimate pixel-wise errors from standard stereo 3D reconstructions and determine the pixel-wise phase-to-coordinate relationships using low-order polynomials. The calibrated pixel-wise polynomial functions can be used for 3D reconstruction for a given pixel phase value. We experimentally demonstrated that our proposed method achieves high accuracy for a large volume: sub-millimeter within 1200(H) × 800 (V) × 1000(D) mm3 .spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceOptics Express Vol. 29, No. 11 / 24 May 2021spa
dc.titleMethod for large-scale structured-light system calibrationspa
dcterms.bibliographicCitationT. Bell, J. Xu, and S. Zhang, “Method for out-of-focus camera calibration,” Appl. Opt. 55(9), 2346–2352 (2016)spa
dcterms.bibliographicCitationB. Li, N. Karpinsky, and S. Zhang, “Novel calibration method for structured-light system with an out-of-focus projector,” Appl. Opt. 53(16), 3415–3426 (2014).spa
dcterms.bibliographicCitationY. An, T. Bell, B. Li, J. Xu, and S. Zhang, “Method for large-range structured light system calibration,” Appl. Opt. 55(33), 9563–9572 (2016)spa
dcterms.bibliographicCitationS. Yang, M. Liu, J. Song, S. Yin, Y. Ren, J. Zhu, and S. Chen, “Projector distortion residual compensation in fringe projection system,” Opt. Lasers Eng. 114, 104–110 (2019)spa
dcterms.bibliographicCitation. S. Lv, Q. Sun, Y. Zhang, Y. Jiang, J. Yang, J. Liu, and J. Wang, “Projector distortion correction in 3D shape measurement using a structured-light system by deep neural networks,” Opt. Lett. 45(1), 204–207 (2020).spa
dcterms.bibliographicCitation. J. Villa, M. Araiza, D. Alaniz, R. Ivanov, and M. Ortiz, “Transformation of phase to (x, y, z)-coordinates for the calibration of a fringe projection profilometer,” Opt. Lasers Eng. 50(2), 256–261 (2012).spa
dcterms.bibliographicCitationR. Vargas, A. G. Marrugo, J. Pineda, J. Meneses, and L. A. Romero, “Camera-Projector Calibration Methods with Compensation of Geometric Distortions in Fringe Projection Profilometry: A Comparative Study,” Opt. Pura Apl. 51(3), 1–10 (2018)spa
dcterms.bibliographicCitationA. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for three-dimensional surface metrology: a review,” J. Opt. Soc. Am. A 37(9), B60–B77 (2020).spa
dcterms.bibliographicCitationS. Gai, F. Da, and M. Tang, “A flexible multi-view calibration and 3d measurement method based on digital fringe projection,” Meas. Sci. Technol. 30(2), 025203 (2019).spa
dcterms.bibliographicCitation. S. Yin, Y. Ren, Y. Guo, J. Zhu, S. Yang, and S. Ye, “Development and calibration of an integrated 3D scanning system for high-accuracy large-scale metrology,” Measurement 54, 65–76 (2014).spa
dcterms.bibliographicCitation. I. Léandry, C. Bréque, and V. Valle, “Calibration of a structured-light projection system: Development to large dimension objects,” Opt. Lasers Eng. 50(3), 373–379 (2012).spa
dcterms.bibliographicCitationP. Wang, J. Wang, J. Xu, Y. Guan, G. Zhang, and K. Chen, “Calibration method for a large-scale structured light measurement system,” Appl. Opt. 56(14), 3995–4002 (2017)spa
dcterms.bibliographicCitation. X. Liu, Z. Cai, Y. Yin, H. Jiang, D. He, W. He, Z. Zhang, and X. Peng, “Calibration of fringe projection profilometry using an inaccurate 2D reference target,” Opt. Lasers Eng. 89, 131–137 (2017).spa
dcterms.bibliographicCitation. J. Yu and F. Da, “Calibration refinement for a fringe projection profilometry system based on plane homography,” Opt. Lasers Eng. 140, 106525 (2021).spa
dcterms.bibliographicCitationS. Xing and H. Guo, “Iterative calibration method for measurement system having lens distortions in fringe projection profilometry,” Opt. Express 28(2), 1177–1196 (2020).spa
dcterms.bibliographicCitation. R. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59(13), D163–D169 (2020).spa
dcterms.bibliographicCitationS. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006)spa
dcterms.bibliographicCitation8. S. Zhang, High-Speed 3D Imaging with Digital Fringe Projection Techniques (CRC Press, 2016)spa
dcterms.bibliographicCitation. K. Li, J. Bu, and D. Zhang, “Lens distortion elimination for improving measurement accuracy of fringe projection profilometry,” Opt. Lasers Eng. 85, 53–64 (2016).spa
dcterms.bibliographicCitationZ. Zhang, “A Flexible New Technique for Camera Calibration,” IEEE Trans. Pattern Anal. Machine Intell. 22(11), 1330–1334 (2000).spa
dcterms.bibliographicCitationR. Juarez-Salazar, A. Giron, J. Zheng, and V. H. Diaz-Ramirez, “Key concepts for phase-to-coordinate conversion in fringe projection systems,” Appl. Opt. 58(18), 4828–4834 (2019).spa
dcterms.bibliographicCitationA. G. Marrugo, R. Vargas, S. Zhang, and L. A. Romero, “Hybrid calibration method for improving 3D measurement accuracy of structured light systems,” Proc. SPIE 11490, 1149008 (2020).spa
dcterms.bibliographicCitation. J. M. Lavest, M. Viala, and M. Dhome, “Do we really need an accurate calibration pattern to achieve a reliable camera calibration?” in Computer Vision — ECCV’98, (Springer, Berlin, Heidelberg, Berlin, Heidelberg, 1998), pp. 158–174spa
dcterms.bibliographicCitationL. Huang, Q. Zhang, and A. Asundi, “Camera calibration with active phase target: improvement on feature detection and optimization,” Opt. Lett. 38(9), 1446–1448 (2013).spa
dcterms.bibliographicCitationX.-L. Zhang, B.-F. Zhang, and Y.-C. Lin, “Accurate phase expansion on reference planes in grating projection profilometry,” Meas. Sci. Technol. 22(7), 075301 (2011)spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1364/OE.422327
dc.subject.keywordsImage reconstructionspa
dc.subject.keywordsPixelsspa
dc.subject.keywordsCalibration methodspa
dc.subject.keywordsCalibration targetsspa
dc.subject.keywordsExtrinsic parameterspa
dc.subject.keywordsIntrinsic parametersspa
dc.subject.keywordsLow-order polynomialsspa
dc.subject.keywordsPolynomial functionsspa
dc.subject.keywordsStereo calibrationspa
dc.subject.keywordsStructured light systemsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.format.size14 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.