Mostrar el registro sencillo del ítem
Methodology of classification, forecast and prediction of healthcare providers accredited in high quality in Colombia
dc.contributor.author | Fontalvo Herrera, Tomás José | |
dc.contributor.author | De la Hoz Domínguez, Enrique José | |
dc.contributor.author | Fontalvo, Orianna | |
dc.coverage.spatial | Colombia | |
dc.coverage.temporal | 2021 | |
dc.date.accessioned | 2021-08-02T18:08:39Z | |
dc.date.available | 2021-08-02T18:08:39Z | |
dc.date.issued | 2021-05-11 | |
dc.date.submitted | 2021-07-30 | |
dc.identifier.citation | Fontalvo-Herrera, T., Delahoz-Dominguez, E. and Fontalvo, O. (2021) ‘Methodology of classification, forecast and prediction of healthcare providers accredited in high quality in Colombia’, Int. J. Productivity and Quality Management, Vol. 33, No. 1, pp.1–20. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10351 | |
dc.description.abstract | This research presents a methodology for classification, forecasting and prediction of healthcare providers accredited in Colombia. For this purpose, a quantitative, descriptive and predictive analysis was carried out of 27 institutions accredited in Colombia by 2016. Consequently, the machine learning techniques cluster analysis and artificial neural networks were used to define business profiles of the institutions under study. The method classifying, forecasting and predicting the membership of a healthcare provider to a business profile, previously created based on the high-quality patterns of accreditation. The input variables were assets, account receivable, inventory, property and equipment and the output variables health service sales and net profit. The cluster analysis defined two main groups. 1) accredited institutions in the process of financial consolidation; 2) accredited institutions financially sound. The process of forecasting and prediction through the creation of an artificial neural network yielded a 95% CI (088, 0.9975) precision in the classification, and 100% and 80% for sensitivity and specificity values respectively. The results evidence the capacity of the proposed methodology to recognise the characteristics and association patterns of HCP accredited in high quality. | spa |
dc.format.extent | 20 páginas | |
dc.format.medium | ||
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Productivity and Quality Management, Vol. 33, No. 1, 2021 | spa |
dc.title | Methodology of classification, forecast and prediction of healthcare providers accredited in high quality in Colombia | spa |
dcterms.bibliographicCitation | Almost, J.M., Van Den Kerkhof, E.G., Strahlendorf, P., Caicco Tett, L., Noonan, J., Hayes, T., Van Hulle, H., Adam, R., Holden, J., Kent-Hillis, T., McDonald, M., Paré, G.C., Lachhar, K. and Silva e Silva, V. (2018) ‘A study of leading indicators for occupational health and safety management systems in healthcare’, BMC Health Serv. Res., Vol. 18, p.296, DOI: https://doi.org/10.1186/s12913-018-3103-0. | spa |
dcterms.bibliographicCitation | Alolayyan, M.N., Ali, K.A.M. and Idris, F. (2013) ‘Total quality management and operational flexibility impact on hospitals performance: a structural modelling approach’, Int. J. Product. Qual. Manag., Vol. 11, No. 2, pp.212–227. | spa |
dcterms.bibliographicCitation | Ansari, A. and Riasi, A. (2016) ‘Modelling and evaluating customer loyalty using neural networks: evidence from startup insurance companies’, Future Bus. J., Vol. 2, No. 1, pp.15–30. | spa |
dcterms.bibliographicCitation | Askim, J., Christensen, T. and Lægreid, P. (2015) ‘Accountability and performance management: the Norwegian hospital, welfare, and immigration administration’, Int. J. Public Adm., Vol. 38, pp.971–982, DOI: https://doi.org/10.1080/01900692.2015.1069840. | spa |
dcterms.bibliographicCitation | Carlucci, D., Renna, P. and Schiuma, G. (2013) ‘Evaluating service quality dimensions as antecedents to outpatient satisfaction using back propagation neural network’, Health Care Manag. Sci., Vol. 16, No. 1, pp.37–44. | spa |
dcterms.bibliographicCitation | Chamboko, R. and Bravo, J.M. (2018) ‘Modelling and forecasting recurrent recovery events on consumer loans’, Int. J. Appl. Decis. Sci., Vol. 12, No. 3, pp.271–287, DOI: 10.1504/ IJADS.2019.100440. | spa |
dcterms.bibliographicCitation | Chamboko, R. and Bravo, J.M. (2018) ‘Modelling and forecasting recurrent recovery events on consumer loans’, Int. J. Appl. Decis. Sci., Vol. 12, No. 3, pp.271–287, DOI: 10.1504/ IJADS.2019.100440. | spa |
dcterms.bibliographicCitation | Chojaczyk, A.A., Teixeira, A.P., Neves, L.C., Cardoso, J.B. and Guedes Soares, C. (2015) ‘Review and application of artificial neural networks models in reliability analysis of steel structures’, Struct. Saf., Vol. 52, pp.78–89, DOI: https://doi.org/10.1016/j.strusafe.2014.09.002. | spa |
dcterms.bibliographicCitation | Cong, Z., Fernandez, A., Billhardt, H. and Lujak, M. (2015) ‘Service discovery acceleration with hierarchical clustering’, Inf. Syst. Front., Vol. 17, No. 4, pp.799–808. | spa |
dcterms.bibliographicCitation | Cruz, P.P. and Herrera, A. (2011) Inteligencia Artificial con Aplicaciones a la Ingeniería, Vol. 1, Marcombo, Mexico DF, Mexico. | spa |
dcterms.bibliographicCitation | Dammaj, A., Alawneh, A., Hammad, A.A. and Sweis, R.J. (2016) ‘Investigating the relationship between knowledge sharing and service quality in private hospitals in Jordan’, Int. J. Product. Qual. Manag., Vol. 17, pp.437, DOI: https://doi.org/10.1504/IJPQM.2016.075248. | spa |
dcterms.bibliographicCitation | De la Garza, J., Morales, B. and González, B. (2013) Análisis Estadístico Mutivariante, Un Enfoque Teórico y Práctico, pp.150–178, McGraw Hill, México DF, México | spa |
dcterms.bibliographicCitation | Decreto Único Reglamentario 780 de 2016 [WWW Document] (2016) [online] https://www.minsalud.gov.co/Normativa/Paginas/decreto-unico-minsalud-780-de-2016.aspx (accessed 24 October 18). | spa |
dcterms.bibliographicCitation | Dweiri, F., Khan, S.A. and Jain, V. (2015) ‘Production planning forecasting method selection in a supply chain: a case study’, Int. J. Appl. Manag. Sci., Vol. 7, pp.38, DOI: https://doi.org/10.1504/IJAMS.2015.068056. | spa |
dcterms.bibliographicCitation | Fontalvo Herrera, T.J., Mendoza Mendoza, A.A., Cadavid, V. and Delimiro, A. (2016) ‘Evaluación del comportamiento de los indicadores de productividad y rentabilidad en las empresas prestadores de salud del Régimen Contributivo en Colombia’, Rev. Salud Uninorte, Vol. 32, No. 3, pp.419–428. | spa |
dcterms.bibliographicCitation | Fontalvo, T., De La Hoz, E. and De La Hoz, E. (2018) ‘Data envelopment analysis method and neural networks in the evaluation and prediction of the technical efficiency of small exporting companies [Método análisis envolvente de datos y redes neuronales en la evaluación y predicción de la eficiencia técnica de pequeñas empresas exportadoras]’, Inf. Tecnol., Vol. 29, pp.267–276 [online] https://doi.org/10.4067/S0718-07642018000600267. | spa |
dcterms.bibliographicCitation | Fontalvo-Herrera, T.J., Delahoz, E.J. and Mendoza-Mendoza, A.A. (2018) ‘Application of data mining for the classification of university programs of industrial engineering accredited in high quality in Colombia [Aplicación de minería de datos para la clasificación de programas universitarios de ingeniería industrial acreditados en alta calidad en Colombia]’, Inf. Tecnol., Vol. 29, pp.89–96 [online] https://doi.org/10.4067/S0718-07642018000300089. | spa |
dcterms.bibliographicCitation | Forrellat Barrios, M. (2014) ‘Calidad en los servicios de salud: un reto ineludible’, Rev. Cuba. Hematol. Inmunol. Hemoter., Vol. 30, No. 2, pp.179–183. | spa |
dcterms.bibliographicCitation | Gøeg, K.R., Cornet, R. and Andersen, S.K. (2015) ‘Clustering clinical models from local electronic health records based on semantic similarity’, J. Biomed. Inform., Vol. 54, No. 1, pp.294–304, DOI: 10.1016/j.jbi.2014.12.015 | spa |
dcterms.bibliographicCitation | González, V.V., Valecillos, J. and Hernández, C. (2013) ‘Calidad en la prestación de servicios de salud: parámetros de medición’, Revista de ciencias sociales, Facultad de Ciencias Sociales, Vol. 19, No. 4, pp.663–671. | spa |
dcterms.bibliographicCitation | Granadillo, E.D.L.H., Gomez, J.M. and Herrera, T.J.F. (2019) ‘Methodology with multivariate calculation to define and evaluate financial productivity profiles of the chemical sector in Colombia’, Int. J. Product. Qual. Manag., Vol. 27, pp.144–160, DOI: https://doi.org/10.1504/IJPQM.2019.100141. | spa |
dcterms.bibliographicCitation | Guerrero, R., Gallego, A.I., Becerril-Montekio, V. and Vásquez, J. (2011) ‘Sistema de salud de Colombia’, Salud Pública México, Vol. 53, No. 2, pp.s144–s155, DOI: 10.1590/S0036- 36342011000800010. | spa |
dcterms.bibliographicCitation | Hasani, H., Jalali, S.M.J., Rezaei, D. and Maleki, M. (2018) ‘A data mining framework for classification of organisational performance based on rough set theory’, Asian J Manag. Sci. Appl., Vol. 3, p.156, DOI: https://doi.org/10.1504/AJMSA.2018.091020. | spa |
dcterms.bibliographicCitation | Hernández, M., Hernández, A. and Bringas, N. (2013) ‘El contexto actual de la calidad en salud y sus indicadores’, Rev Mex Med Fis Rehab, Vol. 25, No. 1, pp.26–33. | spa |
dcterms.bibliographicCitation | Jahantigh, F.F. (2019) ‘Evaluation of healthcare service quality management in an Iranian hospital by using fuzzy logic’, Int. J. Product. Qual. Manag., Vol. 26, p.160, DOI: https://doi.org/10.1504/IJPQM.2019.097764. | spa |
dcterms.bibliographicCitation | Kamble, R. and Wankhade, L. (2017) ‘Perspectives on productivity: identifying attributes influencing productivity in various industrial sectors’, Int. J. Product. Qual. Manag., Vol. 22, p.536, DOI: https://doi.org/10.1504/IJPQM.2017.087868. | spa |
dcterms.bibliographicCitation | Kaufman, L. and Rousseeuw, P.J. (1990) ‘Partitioning around medoids (program pam)’, Find. Groups Data Introd. Clust. Anal., No. 1, pp.68–125. | spa |
dcterms.bibliographicCitation | Khraisat, A., Sweis, R.J., Saleh, R., Suifan, T., Hiyassat, M. and Sarea, A. (2017) ‘The assessment of service quality in private hospitals in Amman area using the gap approach’, Int. J. Product. Qual. Manag., Vol. 22, No. 3, pp.281–308. | spa |
dcterms.bibliographicCitation | Menardi, G. (2011) ‘Density-based Silhouette diagnostics for clustering methods’, Stat. Comput., Vol. 21, pp.295–308, DOI: https://doi.org/10.1007/s11222-010-9169-0. | spa |
dcterms.bibliographicCitation | Mettler, T. (2013) ‘Explorative clustering of clinical user profiles: A first step towards user-centered health information systems | spa |
dcterms.bibliographicCitation | Nasseri, S.H. and Kiaei, H. (2019) ‘Ranking of efficient units on the basis of distance from virtual ideal and anti-ideal units’, Int. J. Appl. Decis. Sci., Vol. 12, p.361, DOI: https://doi.org/10.1504/IJADS.2019.102640. | spa |
dcterms.bibliographicCitation | Peng, X., Lin, P., Zhang, T. and Wang, J. (2013) ‘Extreme learning machine-based classification of ADHD using brain structural MRI data’, PloS one, Vol. 8, No. 11, p.e79476 | spa |
dcterms.bibliographicCitation | Raina, S.H., Bhat, R.L. and Dar, K.H. (2018) ‘Service quality in private hospitals of Jammu and Kashmir – an empirical assessment from District Srinagar’, Int. J. Healthc. Technol. Manag., Vol. 17, p.197, DOI: https://doi.org/10.1504/IJHTM.2018.098390 | spa |
dcterms.bibliographicCitation | Ricks, B. and Ventura, D. (2003) ‘Training a quantum neural network’, Proceedings of the 16th International Conference on Neural Information Processing Systems, NIPS’03, Whistler, British Columbia, Canada, MIT Press, pp.1019–1026. | spa |
dcterms.bibliographicCitation | Ronao, C.A. and Cho, S-B. (2016) ‘Human activity recognition with smartphone sensors using deep learning neural networks’, Expert Syst. Appl., Vol. 59, pp.235–244, DOI: https://doi.org/10.1016/j.eswa.2016.04.032. | spa |
dcterms.bibliographicCitation | Scardapane, S. and Wang, D. (2017) ‘Randomness in neural networks: an overview’, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., Vol. 7, p.e1200, DOI: https://doi.org/10.1002/widm.1200. | spa |
dcterms.bibliographicCitation | Setiono, R. (2001) ‘Feedforward neural network construction using cross validation’, Neural Computation, Vol. 13, No. 12, pp.2865–2877. | spa |
dcterms.bibliographicCitation | Shaw, C.D., Braithwaite, J., Moldovan, M., Nicklin, W., Grgic, I., Fortune, T. and Whittaker, S. (2013) ‘Profiling health-care accreditation organizations: an international survey’, Int. J. Qual. Health Care, Vol. 25, pp.222–231. | spa |
dcterms.bibliographicCitation | Singhtaun, C. and Hattayanon, R. (2017) ‘An application of quality cost analysis as a tool for quality management’, Int. J. Product. Qual. Manag., Vol. 22, pp.205–222. | spa |
dcterms.bibliographicCitation | Sreenivasan, S. and Sundaram, M. (2018) ‘A probabilistic model for predicting service level adherence of application support projects’, Int. J. Product. Qual. Manag. Vol. 25, pp.305–330, DOI: https://doi.org/10.1504/IJPQM.2018.095648 | spa |
dcterms.bibliographicCitation | Tosun, Ö. (2012) ‘Using data envelopment analysis-neural network model to evaluate hospital efficiency’, Int. J. Product. Qual. Manag., Vol. 9, pp.245–257. | spa |
dcterms.bibliographicCitation | Tsofa, B., Molyneux, S., Gilson, L. and Goodman, C. (2017) ‘How does decentralisation affect health sector planning and financial management? A case study of early effects of devolution in Kilifi County’, Kenya. Int. J. Equity Health, Vol. 16, p.151, DOI: https://doi.org/10.1186/s12939-017-0649-0 | spa |
dcterms.bibliographicCitation | Vaver, J. (2014) ‘Evaluating techniques for clustering geographic entities’. | spa |
dcterms.bibliographicCitation | Wang, S., Wang, L., Gao, S. and Bai, Z. (2017) ‘Stock price prediction based on chaotic hybrid particle swarm optimisation-RBF neural network’, Int. J. Appl. Decis. Sci., Vol. 10, p.89, DOI: https://doi.org/10.1504/IJADS.2017.084307. | spa |
dcterms.bibliographicCitation | Zahar, M., Barkany, A.E. and Biyaali, A.E. (2016) ‘Cost of quality in healthcare: a case study in a clinical laboratory’, Int. J. Product. Qual. Manag., Vol. 17, pp.536–548. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.1504/IJPQM.2021.115290 | |
dc.subject.keywords | Cluster-analysis | spa |
dc.subject.keywords | Neural networks | spa |
dc.subject.keywords | Quality | spa |
dc.subject.keywords | Business profiles | spa |
dc.subject.keywords | Healthcare | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.