Mostrar el registro sencillo del ítem

dc.contributor.authorFontalvo Herrera, Tomás José
dc.contributor.authorDe la Hoz Domínguez, Enrique José
dc.contributor.authorFontalvo, Orianna
dc.coverage.spatialColombia
dc.coverage.temporal2021
dc.date.accessioned2021-08-02T18:08:39Z
dc.date.available2021-08-02T18:08:39Z
dc.date.issued2021-05-11
dc.date.submitted2021-07-30
dc.identifier.citationFontalvo-Herrera, T., Delahoz-Dominguez, E. and Fontalvo, O. (2021) ‘Methodology of classification, forecast and prediction of healthcare providers accredited in high quality in Colombia’, Int. J. Productivity and Quality Management, Vol. 33, No. 1, pp.1–20.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10351
dc.description.abstractThis research presents a methodology for classification, forecasting and prediction of healthcare providers accredited in Colombia. For this purpose, a quantitative, descriptive and predictive analysis was carried out of 27 institutions accredited in Colombia by 2016. Consequently, the machine learning techniques cluster analysis and artificial neural networks were used to define business profiles of the institutions under study. The method classifying, forecasting and predicting the membership of a healthcare provider to a business profile, previously created based on the high-quality patterns of accreditation. The input variables were assets, account receivable, inventory, property and equipment and the output variables health service sales and net profit. The cluster analysis defined two main groups. 1) accredited institutions in the process of financial consolidation; 2) accredited institutions financially sound. The process of forecasting and prediction through the creation of an artificial neural network yielded a 95% CI (088, 0.9975) precision in the classification, and 100% and 80% for sensitivity and specificity values respectively. The results evidence the capacity of the proposed methodology to recognise the characteristics and association patterns of HCP accredited in high quality.spa
dc.format.extent20 páginas
dc.format.mediumPDF
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceProductivity and Quality Management, Vol. 33, No. 1, 2021spa
dc.titleMethodology of classification, forecast and prediction of healthcare providers accredited in high quality in Colombiaspa
dcterms.bibliographicCitationAlmost, J.M., Van Den Kerkhof, E.G., Strahlendorf, P., Caicco Tett, L., Noonan, J., Hayes, T., Van Hulle, H., Adam, R., Holden, J., Kent-Hillis, T., McDonald, M., Paré, G.C., Lachhar, K. and Silva e Silva, V. (2018) ‘A study of leading indicators for occupational health and safety management systems in healthcare’, BMC Health Serv. Res., Vol. 18, p.296, DOI: https://doi.org/10.1186/s12913-018-3103-0.spa
dcterms.bibliographicCitationAlolayyan, M.N., Ali, K.A.M. and Idris, F. (2013) ‘Total quality management and operational flexibility impact on hospitals performance: a structural modelling approach’, Int. J. Product. Qual. Manag., Vol. 11, No. 2, pp.212–227.spa
dcterms.bibliographicCitationAnsari, A. and Riasi, A. (2016) ‘Modelling and evaluating customer loyalty using neural networks: evidence from startup insurance companies’, Future Bus. J., Vol. 2, No. 1, pp.15–30.spa
dcterms.bibliographicCitationAskim, J., Christensen, T. and Lægreid, P. (2015) ‘Accountability and performance management: the Norwegian hospital, welfare, and immigration administration’, Int. J. Public Adm., Vol. 38, pp.971–982, DOI: https://doi.org/10.1080/01900692.2015.1069840.spa
dcterms.bibliographicCitationCarlucci, D., Renna, P. and Schiuma, G. (2013) ‘Evaluating service quality dimensions as antecedents to outpatient satisfaction using back propagation neural network’, Health Care Manag. Sci., Vol. 16, No. 1, pp.37–44.spa
dcterms.bibliographicCitationChamboko, R. and Bravo, J.M. (2018) ‘Modelling and forecasting recurrent recovery events on consumer loans’, Int. J. Appl. Decis. Sci., Vol. 12, No. 3, pp.271–287, DOI: 10.1504/ IJADS.2019.100440.spa
dcterms.bibliographicCitationChamboko, R. and Bravo, J.M. (2018) ‘Modelling and forecasting recurrent recovery events on consumer loans’, Int. J. Appl. Decis. Sci., Vol. 12, No. 3, pp.271–287, DOI: 10.1504/ IJADS.2019.100440.spa
dcterms.bibliographicCitationChojaczyk, A.A., Teixeira, A.P., Neves, L.C., Cardoso, J.B. and Guedes Soares, C. (2015) ‘Review and application of artificial neural networks models in reliability analysis of steel structures’, Struct. Saf., Vol. 52, pp.78–89, DOI: https://doi.org/10.1016/j.strusafe.2014.09.002.spa
dcterms.bibliographicCitationCong, Z., Fernandez, A., Billhardt, H. and Lujak, M. (2015) ‘Service discovery acceleration with hierarchical clustering’, Inf. Syst. Front., Vol. 17, No. 4, pp.799–808.spa
dcterms.bibliographicCitationCruz, P.P. and Herrera, A. (2011) Inteligencia Artificial con Aplicaciones a la Ingeniería, Vol. 1, Marcombo, Mexico DF, Mexico.spa
dcterms.bibliographicCitationDammaj, A., Alawneh, A., Hammad, A.A. and Sweis, R.J. (2016) ‘Investigating the relationship between knowledge sharing and service quality in private hospitals in Jordan’, Int. J. Product. Qual. Manag., Vol. 17, pp.437, DOI: https://doi.org/10.1504/IJPQM.2016.075248.spa
dcterms.bibliographicCitationDe la Garza, J., Morales, B. and González, B. (2013) Análisis Estadístico Mutivariante, Un Enfoque Teórico y Práctico, pp.150–178, McGraw Hill, México DF, Méxicospa
dcterms.bibliographicCitationDecreto Único Reglamentario 780 de 2016 [WWW Document] (2016) [online] https://www.minsalud.gov.co/Normativa/Paginas/decreto-unico-minsalud-780-de-2016.aspx (accessed 24 October 18).spa
dcterms.bibliographicCitationDweiri, F., Khan, S.A. and Jain, V. (2015) ‘Production planning forecasting method selection in a supply chain: a case study’, Int. J. Appl. Manag. Sci., Vol. 7, pp.38, DOI: https://doi.org/10.1504/IJAMS.2015.068056.spa
dcterms.bibliographicCitationFontalvo Herrera, T.J., Mendoza Mendoza, A.A., Cadavid, V. and Delimiro, A. (2016) ‘Evaluación del comportamiento de los indicadores de productividad y rentabilidad en las empresas prestadores de salud del Régimen Contributivo en Colombia’, Rev. Salud Uninorte, Vol. 32, No. 3, pp.419–428.spa
dcterms.bibliographicCitationFontalvo, T., De La Hoz, E. and De La Hoz, E. (2018) ‘Data envelopment analysis method and neural networks in the evaluation and prediction of the technical efficiency of small exporting companies [Método análisis envolvente de datos y redes neuronales en la evaluación y predicción de la eficiencia técnica de pequeñas empresas exportadoras]’, Inf. Tecnol., Vol. 29, pp.267–276 [online] https://doi.org/10.4067/S0718-07642018000600267.spa
dcterms.bibliographicCitationFontalvo-Herrera, T.J., Delahoz, E.J. and Mendoza-Mendoza, A.A. (2018) ‘Application of data mining for the classification of university programs of industrial engineering accredited in high quality in Colombia [Aplicación de minería de datos para la clasificación de programas universitarios de ingeniería industrial acreditados en alta calidad en Colombia]’, Inf. Tecnol., Vol. 29, pp.89–96 [online] https://doi.org/10.4067/S0718-07642018000300089.spa
dcterms.bibliographicCitationForrellat Barrios, M. (2014) ‘Calidad en los servicios de salud: un reto ineludible’, Rev. Cuba. Hematol. Inmunol. Hemoter., Vol. 30, No. 2, pp.179–183.spa
dcterms.bibliographicCitationGøeg, K.R., Cornet, R. and Andersen, S.K. (2015) ‘Clustering clinical models from local electronic health records based on semantic similarity’, J. Biomed. Inform., Vol. 54, No. 1, pp.294–304, DOI: 10.1016/j.jbi.2014.12.015spa
dcterms.bibliographicCitationGonzález, V.V., Valecillos, J. and Hernández, C. (2013) ‘Calidad en la prestación de servicios de salud: parámetros de medición’, Revista de ciencias sociales, Facultad de Ciencias Sociales, Vol. 19, No. 4, pp.663–671.spa
dcterms.bibliographicCitationGranadillo, E.D.L.H., Gomez, J.M. and Herrera, T.J.F. (2019) ‘Methodology with multivariate calculation to define and evaluate financial productivity profiles of the chemical sector in Colombia’, Int. J. Product. Qual. Manag., Vol. 27, pp.144–160, DOI: https://doi.org/10.1504/IJPQM.2019.100141.spa
dcterms.bibliographicCitationGuerrero, R., Gallego, A.I., Becerril-Montekio, V. and Vásquez, J. (2011) ‘Sistema de salud de Colombia’, Salud Pública México, Vol. 53, No. 2, pp.s144–s155, DOI: 10.1590/S0036- 36342011000800010.spa
dcterms.bibliographicCitationHasani, H., Jalali, S.M.J., Rezaei, D. and Maleki, M. (2018) ‘A data mining framework for classification of organisational performance based on rough set theory’, Asian J Manag. Sci. Appl., Vol. 3, p.156, DOI: https://doi.org/10.1504/AJMSA.2018.091020.spa
dcterms.bibliographicCitationHernández, M., Hernández, A. and Bringas, N. (2013) ‘El contexto actual de la calidad en salud y sus indicadores’, Rev Mex Med Fis Rehab, Vol. 25, No. 1, pp.26–33.spa
dcterms.bibliographicCitationJahantigh, F.F. (2019) ‘Evaluation of healthcare service quality management in an Iranian hospital by using fuzzy logic’, Int. J. Product. Qual. Manag., Vol. 26, p.160, DOI: https://doi.org/10.1504/IJPQM.2019.097764.spa
dcterms.bibliographicCitationKamble, R. and Wankhade, L. (2017) ‘Perspectives on productivity: identifying attributes influencing productivity in various industrial sectors’, Int. J. Product. Qual. Manag., Vol. 22, p.536, DOI: https://doi.org/10.1504/IJPQM.2017.087868.spa
dcterms.bibliographicCitationKaufman, L. and Rousseeuw, P.J. (1990) ‘Partitioning around medoids (program pam)’, Find. Groups Data Introd. Clust. Anal., No. 1, pp.68–125.spa
dcterms.bibliographicCitationKhraisat, A., Sweis, R.J., Saleh, R., Suifan, T., Hiyassat, M. and Sarea, A. (2017) ‘The assessment of service quality in private hospitals in Amman area using the gap approach’, Int. J. Product. Qual. Manag., Vol. 22, No. 3, pp.281–308.spa
dcterms.bibliographicCitationMenardi, G. (2011) ‘Density-based Silhouette diagnostics for clustering methods’, Stat. Comput., Vol. 21, pp.295–308, DOI: https://doi.org/10.1007/s11222-010-9169-0.spa
dcterms.bibliographicCitationMettler, T. (2013) ‘Explorative clustering of clinical user profiles: A first step towards user-centered health information systemsspa
dcterms.bibliographicCitationNasseri, S.H. and Kiaei, H. (2019) ‘Ranking of efficient units on the basis of distance from virtual ideal and anti-ideal units’, Int. J. Appl. Decis. Sci., Vol. 12, p.361, DOI: https://doi.org/10.1504/IJADS.2019.102640.spa
dcterms.bibliographicCitationPeng, X., Lin, P., Zhang, T. and Wang, J. (2013) ‘Extreme learning machine-based classification of ADHD using brain structural MRI data’, PloS one, Vol. 8, No. 11, p.e79476spa
dcterms.bibliographicCitationRaina, S.H., Bhat, R.L. and Dar, K.H. (2018) ‘Service quality in private hospitals of Jammu and Kashmir – an empirical assessment from District Srinagar’, Int. J. Healthc. Technol. Manag., Vol. 17, p.197, DOI: https://doi.org/10.1504/IJHTM.2018.098390spa
dcterms.bibliographicCitationRicks, B. and Ventura, D. (2003) ‘Training a quantum neural network’, Proceedings of the 16th International Conference on Neural Information Processing Systems, NIPS’03, Whistler, British Columbia, Canada, MIT Press, pp.1019–1026.spa
dcterms.bibliographicCitationRonao, C.A. and Cho, S-B. (2016) ‘Human activity recognition with smartphone sensors using deep learning neural networks’, Expert Syst. Appl., Vol. 59, pp.235–244, DOI: https://doi.org/10.1016/j.eswa.2016.04.032.spa
dcterms.bibliographicCitationScardapane, S. and Wang, D. (2017) ‘Randomness in neural networks: an overview’, Wiley Interdiscip. Rev. Data Min. Knowl. Discov., Vol. 7, p.e1200, DOI: https://doi.org/10.1002/widm.1200.spa
dcterms.bibliographicCitationSetiono, R. (2001) ‘Feedforward neural network construction using cross validation’, Neural Computation, Vol. 13, No. 12, pp.2865–2877.spa
dcterms.bibliographicCitationShaw, C.D., Braithwaite, J., Moldovan, M., Nicklin, W., Grgic, I., Fortune, T. and Whittaker, S. (2013) ‘Profiling health-care accreditation organizations: an international survey’, Int. J. Qual. Health Care, Vol. 25, pp.222–231.spa
dcterms.bibliographicCitationSinghtaun, C. and Hattayanon, R. (2017) ‘An application of quality cost analysis as a tool for quality management’, Int. J. Product. Qual. Manag., Vol. 22, pp.205–222.spa
dcterms.bibliographicCitationSreenivasan, S. and Sundaram, M. (2018) ‘A probabilistic model for predicting service level adherence of application support projects’, Int. J. Product. Qual. Manag. Vol. 25, pp.305–330, DOI: https://doi.org/10.1504/IJPQM.2018.095648spa
dcterms.bibliographicCitationTosun, Ö. (2012) ‘Using data envelopment analysis-neural network model to evaluate hospital efficiency’, Int. J. Product. Qual. Manag., Vol. 9, pp.245–257.spa
dcterms.bibliographicCitationTsofa, B., Molyneux, S., Gilson, L. and Goodman, C. (2017) ‘How does decentralisation affect health sector planning and financial management? A case study of early effects of devolution in Kilifi County’, Kenya. Int. J. Equity Health, Vol. 16, p.151, DOI: https://doi.org/10.1186/s12939-017-0649-0spa
dcterms.bibliographicCitationVaver, J. (2014) ‘Evaluating techniques for clustering geographic entities’.spa
dcterms.bibliographicCitationWang, S., Wang, L., Gao, S. and Bai, Z. (2017) ‘Stock price prediction based on chaotic hybrid particle swarm optimisation-RBF neural network’, Int. J. Appl. Decis. Sci., Vol. 10, p.89, DOI: https://doi.org/10.1504/IJADS.2017.084307.spa
dcterms.bibliographicCitationZahar, M., Barkany, A.E. and Biyaali, A.E. (2016) ‘Cost of quality in healthcare: a case study in a clinical laboratory’, Int. J. Product. Qual. Manag., Vol. 17, pp.536–548.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1504/IJPQM.2021.115290
dc.subject.keywordsCluster-analysisspa
dc.subject.keywordsNeural networksspa
dc.subject.keywordsQualityspa
dc.subject.keywordsBusiness profilesspa
dc.subject.keywordsHealthcarespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.