Mostrar el registro sencillo del ítem

dc.contributor.authorAlviz-Meza, Anibal
dc.contributor.authorDuong, Adam
dc.contributor.authorOrozco-Agamez, Juan
dc.contributor.authorKafarov, Viatcheslav
dc.contributor.authorCardenas Escorcia, Yulineth
dc.contributor.authorCarrillo Caballero, Gaylord Enrique
dc.contributor.authorPeña-Ballesteros, Darío
dc.date.accessioned2021-07-31T14:45:25Z
dc.date.available2021-07-31T14:45:25Z
dc.date.issued2021-07-25
dc.date.submitted2021-07-30
dc.identifier.citationAlviz-Meza A, Duong A, Orozco-Agamez J, Kafarov V, Cárdenas-Escorcia Y, Carrillo-Caballero G, Peña-Ballesteros D, Study of Early P91 Dual Corrosion in Steam and Simulated Combustion Gases from a Gas-Fired Boiler, Journal of Materials Research and Technology, https:// doi.org/10.1016/j.jmrt.2021.04.071.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10349
dc.description.abstractP91 ferritic steel pipes face dual environments during boilers operation: steam-side and fire-side. This P91 steel assessment differs from the dual studies performed to simulate coal-fired boilers -oxyfuel/steam atmospheres- since the fuel source is replaced by natural gas. This research work includes designing a device to reproduce dual corrosion studies at 650 °C and testing times up to 200 h. One coupon face was exposed to combustion gases while the other to steam. As a main result, the duplex's inner layer allowed to state that combustion gases overcome the steam oxidation rate by a factor of 1.6. Besides, we supplied physical-chemistry information about the surface and bulk of oxide layers by atomic force microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Thus, our experiments aimed to obtain data about the P91 early degradation under the simultaneous 72.73N2/8.30CO2/3.37O2/15.60H2O %mol and steam influence. We last for a future work the isolated evaluation of both environments to determine their role on the corrosion rate obtained in the current study.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Materials Research and Technology 2021spa
dc.titleStudy of early P91 dual corrosion in steam and simulated combustion gases from a gas-fired boilespa
dcterms.bibliographicCitationT. Sasaki, K. Kobayashi, T. Yamaura, T. Kasuya, and T. Masuda, “Production and properties of seamless modified 9Cr-1Mo steel boiler tubes,” Kawasaki Steel Tech. Rep., vol. 25, pp. 78–87, 1991.spa
dcterms.bibliographicCitationI. Le May, “Creep and fracture of engineering materials and structures,” Mater. Charact., vol. 33, p. 79, 2003.spa
dcterms.bibliographicCitationF. Noble, B. Senior, and B. Eyre, “The effect of phosphorus on the ductility of 9Cr-1Mo steels,” Acta Metall. Mater., vol. 38, no. 5, pp. 709–717, May 1990spa
dcterms.bibliographicCitationH. Nickel, P. J. Ennis, and W. J. Quadakkers, “The creep rupture properties of 9% chromium steels and the influence of oxidation on strength,” Miner. Process. Extr. Metall. Rev., vol. 22, no. 1–2, pp. 181–195, 2001spa
dcterms.bibliographicCitationA. Fabricius and P. Jackson, “Premature Grade 91 failures — worldwide plant operational experiences,” Eng. Fail. Anal., pp. 1–9, 2016.spa
dcterms.bibliographicCitationG. Ju, W. Wu, and S. Dai, “Failure of 9Cr-1Mo tubes in a feed furnace of dehydrogenation unit,” Int. J. Press. Vessel. Pip., vol. 74, no. 3, pp. 199–204, 1997.spa
dcterms.bibliographicCitationT. Kurniawan, F. A. B. Fauzi, and Y. P. Asmara, “High-temperature oxidation of fe-cr steels in steam condition – A review,” Indones. J. Sci. Technol., vol. 1, no. 1, pp. 107–114, 2016.spa
dcterms.bibliographicCitationA. Shibli and F. Starr, “Some aspects of plant and research experience in the use of new high strength martensitic steel P91,” Int. J. Press. Vessel. Pip., vol. 84, no. 1–2, pp. 114–122, 2007.spa
dcterms.bibliographicCitationK. Nakagawa, Y. Matsunaga, and T. Yanagisawa, “Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment,” Mater. High Temp., vol. 20, no. 1, pp. 67–73, 2003spa
dcterms.bibliographicCitationK. Nakagawa, Y. Matsunaga, and T. Yanagisawa, “Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment,” Mater. High Temp., vol. 18, no. 1, pp. 51–56, 2001spa
dcterms.bibliographicCitationK. Chandra and A. Kranzmann, “High temperature oxidation of 9 – 12 % Cr ferritic /martensitic steels under dual-environment conditions,” Corros. Eng. Sci. Journal Pre-proof Technol., vol. 53, no. S1, pp. 27–33, 2018.spa
dcterms.bibliographicCitationM. Mosquera-Feijoo, "Influence of surface ash layer on dual corrosion," Doctoral dissertation, Universidade de Vigo, Vigo, 2019.spa
dcterms.bibliographicCitationA. Alviz-Meza, V. Kafarov, and D. Y. Peña-ballesteros, “Evaluation of Corrosion Damage Obtained During the Combustion Process in a Boiler. Case Study : Ferritic ASTM A335 P91 Steel,” Chem. Eng. Trans., vol. 70, pp. 1093– 1098, 2018.spa
dcterms.bibliographicCitationM. Dunder, I. Samardzic, and T. Vuherer, “Weldability investigation steel P91 by weld thermal cycle simulation,” Metalurgija, vol. 54, no. 3, pp. 539–542, 2015.spa
dcterms.bibliographicCitationM. Durand-Charre, “The basic phase diagrams,” in The Microestructure of Steels and Cast Irons, Ed. Springer, pp. 51–73.spa
dcterms.bibliographicCitationN. E. Zavaleta, H. De Cicco, and C. Danón, “Influencia del tiempo de revenido a 780 ºC sobre la resistencia al creep del acero ASTM A335 P91,” Materia, vol. 23, no. 2, pp. 1–8, 2018.spa
dcterms.bibliographicCitationT. Gheno et al., “Carburisation of ferritic Fe-Cr alloys by low carbon activity gases,” Corros. Sci., vol. 53, no. 9, pp. 2767–2777, 2011.spa
dcterms.bibliographicCitationASTM Internacional, “Standard Test Methods for Determining Average Grain Size: E112 - 10,” 2004.spa
dcterms.bibliographicCitationK. Delura, P. Bylina, M. Jele, and J. Kruczyk, “Mineralogy and magnetism of Fe – Cr spinel series minerals from podiform chromitites and dunites from Tapadła ( Sudetic ophiolite , SW Poland) and their relationship to palaeomagnetic results of the dunites,” Geophys. J. Int., vol. 175, pp. 885–900, 2008.spa
dcterms.bibliographicCitationJ. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie, United States of America: PerkinElmer Corporation, 1992.spa
dcterms.bibliographicCitationNITS, “National Institute of Standards and Technology NIST X-ray Photoelectron Spectroscopy (XPS) Database,” 2012. [Online]. Available: https://srdata.nist.gov/xps/main_search_menu.aspx. [Accessed: 30-Mar-2021].spa
dcterms.bibliographicCitationM. Bravo, J. Huerta, D. Cabrera, and A. Herrera, “Composition assessment of ferric oxide by accurate peak fitting of the Fe 2p photoemission spectrum,” Surf. Interface Anal., vol. 49, no. 4, pp. 253–260, 2016.spa
dcterms.bibliographicCitationD. Young, High temperature oxidation and corrosion of metals, 1st ed. Cambridge: Department of Materials Science and Metallurgy, University Cambridge, 2008.spa
dcterms.bibliographicCitationNACE International, “Standard Recommended Practice: Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operation,” Houston, RP 0775, 2005.spa
dcterms.bibliographicCitationG. Meier et al., “Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr -X Alloys,” Oxid. Met., vol. 74, no. 5–6, pp. 319–340, 2010.spa
dcterms.bibliographicCitationJ. Ehlers et al., “Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments,” Corros. Sci., vol. 48, no. 11, pp. 3428–3454, 2006.spa
dcterms.bibliographicCitationJ. Quadakkers, W.J., Zurek, “Shreir’s Corrosion: Oxidation in Steam and Steam / Hydrogen Environments,” vol. 1, pp. 407–456, 2010.spa
dcterms.bibliographicCitationW. J. Quadakkers, P. J. Ennis, J. Zurek, and M. Michalik, “Steam oxidation of ferritic steels - Laboratory test kinetic data,” Mater. High Temp., vol. 22, no. 1–2, pp. 47–60, 2005.spa
dcterms.bibliographicCitationS. Saunders, M. Monteiro, and F. Rizzo, “The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review,” Prog. Mater. Sci., vol. 53, no. 5, pp. 775–837, 2008. Journal Pre-proofspa
dcterms.bibliographicCitationF. Pérez and S. Castañeda, “Study by means of the mass spectrometry of volatile species in the oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and ferritic/martensitic steel samples at 923 K in Ar+(10 to 80%)H2O vapor atmosphere for new-materials design,” Oxid. Met., vol. 66, no. 5–6, pp. 231–251, 2006.spa
dcterms.bibliographicCitationE. J. Opila, N. S. Jacobson, D. L. Myers, and E. H. Copland, “Predicting oxide stability in High-Temperature Water Vapor,” Jom, vol. 58, no. January, pp. 22– 28, 2006.spa
dcterms.bibliographicCitationM. Michalik, M. Hansel, J. Zurek, L. Singheiser, and W. J. Ouadakkers, Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low, vol. 67. Forschungszentrums Jülich, 2007.spa
dcterms.bibliographicCitationL. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant, and K. Rousseau, “Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 °C : detailed analysis of the inner oxide layer,” Corros. Sci., vol. 100, pp. 253–266, 2015.spa
dcterms.bibliographicCitationR. P. Oleksak, M. Kapoor, D. Perea, G. Holcomb, and O. Dogan, “The role of metal vacancies during high-temperature oxidation of alloys,” npj Mater. Degrad., vol. 2, no. 1, p. 25, 2018.spa
dcterms.bibliographicCitationS. Swaminathan, C. Mallika, N. Gopala, C. Thinaharan, T. Jayakumar, and K. Mudali, “Evolution of surface chemistry and morphology of oxide scale formed during initial stage oxidation of modified 9Cr – 1Mo steel,” Corros. Sci., vol. 79, pp. 59–68, 2014.spa
dcterms.bibliographicCitationC. Anghel, E. Hörnlund, G. Hultquist, and M. Limbäck, “Gas phase analysis of CO interactions with solid surfaces at high temperatures,” Appl. Surf. Sci., vol. 233, no. 1–4, pp. 392–401, 2004.spa
dcterms.bibliographicCitationK. Chandra, I. Dörfel, N. Wollschläger, and A. Kranzmann, “Microstructural investigation using advanced TEM techniques of inner oxide layers formed on T92 steel in oxyfuel environment,” Corros. Sci., vol. 148, pp. 94–109, 2019.spa
dcterms.bibliographicCitationX. Zheng and D. Young, “High-Temperature Corrosion of Cr2O3-Forming Alloys in CO-CO2-N2 Atmospheres,” Oxid. Met., vol. 42, pp. 163-190, 1994.spa
dcterms.bibliographicCitationJ. Piro, T. Olszewski, H. Penkalla, G. Meier, L. Singheiser, and W. Quadakkers, “Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments,” Mater. High Temp., vol. 26, no. 1, pp. 63–72, 2009.spa
dcterms.bibliographicCitationM. R. Taylor, J. M. Calvert, D. G. Lees, and D. B. Meadowcroft, “The Mechanism of Corrosion of Fe-9 % Cr Alloys in Carbon Dioxide,” Oxid. Met., vol. 14, no. 6, pp. 499–516, 1980.spa
dcterms.bibliographicCitationT. Gheno, D. Monceau, J. Zhang, and D. J. Young, “Carburisation of ferritic FeCr alloys by low carbon activity gases,” Corros. Sci., vol. 53, pp. 2767–2777, 2011.spa
dcterms.bibliographicCitationA. Alviz-Meza, J. Sanabria-Cala, V. Kafarov, and D. Y. Peña-Ballesteros, “Study Journal Pre-proof of Continuous Corrosion on ASTM A335 P91 Steel in an Environment of CO2- O2-N2-H2O Derived from the Theoretical Combustion Products of a Mixture of Refining Gases at High Temperatures,” Chem. Eng. Trans., vol. 70, pp. 1069– 1074, 2018.spa
dcterms.bibliographicCitationG. Lai, High Temperature Corrosion And Materials Applications, 1st ed. ASM Internacional, 2007.spa
dcterms.bibliographicCitationK. Kaya, S. Hayashi, and S. Ukai, “High-temperature Oxidation Behavior of 9Cr Ferritic-steel in Carbon Dioxide,” ISIJ Int., vol. 54, no. 6, pp. 1379–1385, 2014.spa
dcterms.bibliographicCitationX. G. Zheng and D. J. Young, “Corrosion of pure in CO-CO2-SO2-N2 atmospheres,” Corros. Sci., vol. 36, no. 12, pp. 1999–2015, 1994.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doidoi.org/10.1016/j.jmrt.2021.04.071
dc.subject.keywordsGas-fired boilerspa
dc.subject.keywordsDual environmentspa
dc.subject.keywordsSteamspa
dc.subject.keywordsCombustion gasesspa
dc.subject.keywordsCorrosion ratespa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.format.size30 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.