Mostrar el registro sencillo del ítem
Study of early P91 dual corrosion in steam and simulated combustion gases from a gas-fired boile
dc.contributor.author | Alviz-Meza, Anibal | |
dc.contributor.author | Duong, Adam | |
dc.contributor.author | Orozco-Agamez, Juan | |
dc.contributor.author | Kafarov, Viatcheslav | |
dc.contributor.author | Cardenas Escorcia, Yulineth | |
dc.contributor.author | Carrillo Caballero, Gaylord Enrique | |
dc.contributor.author | Peña-Ballesteros, Darío | |
dc.date.accessioned | 2021-07-31T14:45:25Z | |
dc.date.available | 2021-07-31T14:45:25Z | |
dc.date.issued | 2021-07-25 | |
dc.date.submitted | 2021-07-30 | |
dc.identifier.citation | Alviz-Meza A, Duong A, Orozco-Agamez J, Kafarov V, Cárdenas-Escorcia Y, Carrillo-Caballero G, Peña-Ballesteros D, Study of Early P91 Dual Corrosion in Steam and Simulated Combustion Gases from a Gas-Fired Boiler, Journal of Materials Research and Technology, https:// doi.org/10.1016/j.jmrt.2021.04.071. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10349 | |
dc.description.abstract | P91 ferritic steel pipes face dual environments during boilers operation: steam-side and fire-side. This P91 steel assessment differs from the dual studies performed to simulate coal-fired boilers -oxyfuel/steam atmospheres- since the fuel source is replaced by natural gas. This research work includes designing a device to reproduce dual corrosion studies at 650 °C and testing times up to 200 h. One coupon face was exposed to combustion gases while the other to steam. As a main result, the duplex's inner layer allowed to state that combustion gases overcome the steam oxidation rate by a factor of 1.6. Besides, we supplied physical-chemistry information about the surface and bulk of oxide layers by atomic force microscopy, scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction analysis. Thus, our experiments aimed to obtain data about the P91 early degradation under the simultaneous 72.73N2/8.30CO2/3.37O2/15.60H2O %mol and steam influence. We last for a future work the isolated evaluation of both environments to determine their role on the corrosion rate obtained in the current study. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Materials Research and Technology 2021 | spa |
dc.title | Study of early P91 dual corrosion in steam and simulated combustion gases from a gas-fired boile | spa |
dcterms.bibliographicCitation | T. Sasaki, K. Kobayashi, T. Yamaura, T. Kasuya, and T. Masuda, “Production and properties of seamless modified 9Cr-1Mo steel boiler tubes,” Kawasaki Steel Tech. Rep., vol. 25, pp. 78–87, 1991. | spa |
dcterms.bibliographicCitation | I. Le May, “Creep and fracture of engineering materials and structures,” Mater. Charact., vol. 33, p. 79, 2003. | spa |
dcterms.bibliographicCitation | F. Noble, B. Senior, and B. Eyre, “The effect of phosphorus on the ductility of 9Cr-1Mo steels,” Acta Metall. Mater., vol. 38, no. 5, pp. 709–717, May 1990 | spa |
dcterms.bibliographicCitation | H. Nickel, P. J. Ennis, and W. J. Quadakkers, “The creep rupture properties of 9% chromium steels and the influence of oxidation on strength,” Miner. Process. Extr. Metall. Rev., vol. 22, no. 1–2, pp. 181–195, 2001 | spa |
dcterms.bibliographicCitation | A. Fabricius and P. Jackson, “Premature Grade 91 failures — worldwide plant operational experiences,” Eng. Fail. Anal., pp. 1–9, 2016. | spa |
dcterms.bibliographicCitation | G. Ju, W. Wu, and S. Dai, “Failure of 9Cr-1Mo tubes in a feed furnace of dehydrogenation unit,” Int. J. Press. Vessel. Pip., vol. 74, no. 3, pp. 199–204, 1997. | spa |
dcterms.bibliographicCitation | T. Kurniawan, F. A. B. Fauzi, and Y. P. Asmara, “High-temperature oxidation of fe-cr steels in steam condition – A review,” Indones. J. Sci. Technol., vol. 1, no. 1, pp. 107–114, 2016. | spa |
dcterms.bibliographicCitation | A. Shibli and F. Starr, “Some aspects of plant and research experience in the use of new high strength martensitic steel P91,” Int. J. Press. Vessel. Pip., vol. 84, no. 1–2, pp. 114–122, 2007. | spa |
dcterms.bibliographicCitation | K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, “Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment,” Mater. High Temp., vol. 20, no. 1, pp. 67–73, 2003 | spa |
dcterms.bibliographicCitation | K. Nakagawa, Y. Matsunaga, and T. Yanagisawa, “Corrosion behavior of ferritic steels on the air sides of boiler tubes in a steam/air dual environment,” Mater. High Temp., vol. 18, no. 1, pp. 51–56, 2001 | spa |
dcterms.bibliographicCitation | K. Chandra and A. Kranzmann, “High temperature oxidation of 9 – 12 % Cr ferritic /martensitic steels under dual-environment conditions,” Corros. Eng. Sci. Journal Pre-proof Technol., vol. 53, no. S1, pp. 27–33, 2018. | spa |
dcterms.bibliographicCitation | M. Mosquera-Feijoo, "Influence of surface ash layer on dual corrosion," Doctoral dissertation, Universidade de Vigo, Vigo, 2019. | spa |
dcterms.bibliographicCitation | A. Alviz-Meza, V. Kafarov, and D. Y. Peña-ballesteros, “Evaluation of Corrosion Damage Obtained During the Combustion Process in a Boiler. Case Study : Ferritic ASTM A335 P91 Steel,” Chem. Eng. Trans., vol. 70, pp. 1093– 1098, 2018. | spa |
dcterms.bibliographicCitation | M. Dunder, I. Samardzic, and T. Vuherer, “Weldability investigation steel P91 by weld thermal cycle simulation,” Metalurgija, vol. 54, no. 3, pp. 539–542, 2015. | spa |
dcterms.bibliographicCitation | M. Durand-Charre, “The basic phase diagrams,” in The Microestructure of Steels and Cast Irons, Ed. Springer, pp. 51–73. | spa |
dcterms.bibliographicCitation | N. E. Zavaleta, H. De Cicco, and C. Danón, “Influencia del tiempo de revenido a 780 ºC sobre la resistencia al creep del acero ASTM A335 P91,” Materia, vol. 23, no. 2, pp. 1–8, 2018. | spa |
dcterms.bibliographicCitation | T. Gheno et al., “Carburisation of ferritic Fe-Cr alloys by low carbon activity gases,” Corros. Sci., vol. 53, no. 9, pp. 2767–2777, 2011. | spa |
dcterms.bibliographicCitation | ASTM Internacional, “Standard Test Methods for Determining Average Grain Size: E112 - 10,” 2004. | spa |
dcterms.bibliographicCitation | K. Delura, P. Bylina, M. Jele, and J. Kruczyk, “Mineralogy and magnetism of Fe – Cr spinel series minerals from podiform chromitites and dunites from Tapadła ( Sudetic ophiolite , SW Poland) and their relationship to palaeomagnetic results of the dunites,” Geophys. J. Int., vol. 175, pp. 885–900, 2008. | spa |
dcterms.bibliographicCitation | J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie, United States of America: PerkinElmer Corporation, 1992. | spa |
dcterms.bibliographicCitation | NITS, “National Institute of Standards and Technology NIST X-ray Photoelectron Spectroscopy (XPS) Database,” 2012. [Online]. Available: https://srdata.nist.gov/xps/main_search_menu.aspx. [Accessed: 30-Mar-2021]. | spa |
dcterms.bibliographicCitation | M. Bravo, J. Huerta, D. Cabrera, and A. Herrera, “Composition assessment of ferric oxide by accurate peak fitting of the Fe 2p photoemission spectrum,” Surf. Interface Anal., vol. 49, no. 4, pp. 253–260, 2016. | spa |
dcterms.bibliographicCitation | D. Young, High temperature oxidation and corrosion of metals, 1st ed. Cambridge: Department of Materials Science and Metallurgy, University Cambridge, 2008. | spa |
dcterms.bibliographicCitation | NACE International, “Standard Recommended Practice: Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons in Oilfield Operation,” Houston, RP 0775, 2005. | spa |
dcterms.bibliographicCitation | G. Meier et al., “Effect of Alloy Composition and Exposure Conditions on the Selective Oxidation Behavior of Ferritic Fe-Cr and Fe-Cr -X Alloys,” Oxid. Met., vol. 74, no. 5–6, pp. 319–340, 2010. | spa |
dcterms.bibliographicCitation | J. Ehlers et al., “Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments,” Corros. Sci., vol. 48, no. 11, pp. 3428–3454, 2006. | spa |
dcterms.bibliographicCitation | J. Quadakkers, W.J., Zurek, “Shreir’s Corrosion: Oxidation in Steam and Steam / Hydrogen Environments,” vol. 1, pp. 407–456, 2010. | spa |
dcterms.bibliographicCitation | W. J. Quadakkers, P. J. Ennis, J. Zurek, and M. Michalik, “Steam oxidation of ferritic steels - Laboratory test kinetic data,” Mater. High Temp., vol. 22, no. 1–2, pp. 47–60, 2005. | spa |
dcterms.bibliographicCitation | S. Saunders, M. Monteiro, and F. Rizzo, “The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review,” Prog. Mater. Sci., vol. 53, no. 5, pp. 775–837, 2008. Journal Pre-proof | spa |
dcterms.bibliographicCitation | F. Pérez and S. Castañeda, “Study by means of the mass spectrometry of volatile species in the oxidation of Cr, Cr2O3, Al, Al2O3, Si, SiO2, Fe and ferritic/martensitic steel samples at 923 K in Ar+(10 to 80%)H2O vapor atmosphere for new-materials design,” Oxid. Met., vol. 66, no. 5–6, pp. 231–251, 2006. | spa |
dcterms.bibliographicCitation | E. J. Opila, N. S. Jacobson, D. L. Myers, and E. H. Copland, “Predicting oxide stability in High-Temperature Water Vapor,” Jom, vol. 58, no. January, pp. 22– 28, 2006. | spa |
dcterms.bibliographicCitation | M. Michalik, M. Hansel, J. Zurek, L. Singheiser, and W. J. Ouadakkers, Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low, vol. 67. Forschungszentrums Jülich, 2007. | spa |
dcterms.bibliographicCitation | L. Martinelli, C. Desgranges, F. Rouillard, K. Ginestar, M. Tabarant, and K. Rousseau, “Comparative oxidation behaviour of Fe-9Cr steel in CO2 and H2O at 550 °C : detailed analysis of the inner oxide layer,” Corros. Sci., vol. 100, pp. 253–266, 2015. | spa |
dcterms.bibliographicCitation | R. P. Oleksak, M. Kapoor, D. Perea, G. Holcomb, and O. Dogan, “The role of metal vacancies during high-temperature oxidation of alloys,” npj Mater. Degrad., vol. 2, no. 1, p. 25, 2018. | spa |
dcterms.bibliographicCitation | S. Swaminathan, C. Mallika, N. Gopala, C. Thinaharan, T. Jayakumar, and K. Mudali, “Evolution of surface chemistry and morphology of oxide scale formed during initial stage oxidation of modified 9Cr – 1Mo steel,” Corros. Sci., vol. 79, pp. 59–68, 2014. | spa |
dcterms.bibliographicCitation | C. Anghel, E. Hörnlund, G. Hultquist, and M. Limbäck, “Gas phase analysis of CO interactions with solid surfaces at high temperatures,” Appl. Surf. Sci., vol. 233, no. 1–4, pp. 392–401, 2004. | spa |
dcterms.bibliographicCitation | K. Chandra, I. Dörfel, N. Wollschläger, and A. Kranzmann, “Microstructural investigation using advanced TEM techniques of inner oxide layers formed on T92 steel in oxyfuel environment,” Corros. Sci., vol. 148, pp. 94–109, 2019. | spa |
dcterms.bibliographicCitation | X. Zheng and D. Young, “High-Temperature Corrosion of Cr2O3-Forming Alloys in CO-CO2-N2 Atmospheres,” Oxid. Met., vol. 42, pp. 163-190, 1994. | spa |
dcterms.bibliographicCitation | J. Piro, T. Olszewski, H. Penkalla, G. Meier, L. Singheiser, and W. Quadakkers, “Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments,” Mater. High Temp., vol. 26, no. 1, pp. 63–72, 2009. | spa |
dcterms.bibliographicCitation | M. R. Taylor, J. M. Calvert, D. G. Lees, and D. B. Meadowcroft, “The Mechanism of Corrosion of Fe-9 % Cr Alloys in Carbon Dioxide,” Oxid. Met., vol. 14, no. 6, pp. 499–516, 1980. | spa |
dcterms.bibliographicCitation | T. Gheno, D. Monceau, J. Zhang, and D. J. Young, “Carburisation of ferritic FeCr alloys by low carbon activity gases,” Corros. Sci., vol. 53, pp. 2767–2777, 2011. | spa |
dcterms.bibliographicCitation | A. Alviz-Meza, J. Sanabria-Cala, V. Kafarov, and D. Y. Peña-Ballesteros, “Study Journal Pre-proof of Continuous Corrosion on ASTM A335 P91 Steel in an Environment of CO2- O2-N2-H2O Derived from the Theoretical Combustion Products of a Mixture of Refining Gases at High Temperatures,” Chem. Eng. Trans., vol. 70, pp. 1069– 1074, 2018. | spa |
dcterms.bibliographicCitation | G. Lai, High Temperature Corrosion And Materials Applications, 1st ed. ASM Internacional, 2007. | spa |
dcterms.bibliographicCitation | K. Kaya, S. Hayashi, and S. Ukai, “High-temperature Oxidation Behavior of 9Cr Ferritic-steel in Carbon Dioxide,” ISIJ Int., vol. 54, no. 6, pp. 1379–1385, 2014. | spa |
dcterms.bibliographicCitation | X. G. Zheng and D. J. Young, “Corrosion of pure in CO-CO2-SO2-N2 atmospheres,” Corros. Sci., vol. 36, no. 12, pp. 1999–2015, 1994. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | doi.org/10.1016/j.jmrt.2021.04.071 | |
dc.subject.keywords | Gas-fired boiler | spa |
dc.subject.keywords | Dual environment | spa |
dc.subject.keywords | Steam | spa |
dc.subject.keywords | Combustion gases | spa |
dc.subject.keywords | Corrosion rate | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.format.size | 30 páginas | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.