Mostrar el registro sencillo del ítem
Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS
dc.contributor.author | Molina Martin, Federico | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Grisales Noreña, Luis Fernando | |
dc.contributor.author | Hernández, Jesus C. | |
dc.contributor.author | Ramírez Vanegas, Carlos A. | |
dc.date.accessioned | 2021-07-31T14:43:52Z | |
dc.date.available | 2021-07-31T14:43:52Z | |
dc.date.issued | 2021-04-22 | |
dc.date.submitted | 2021-07-30 | |
dc.identifier.citation | Molina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C.; Ramírez-Vanegas, C.A. Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS. Electronics 2021, 10, 1002. https://doi.org/10.3390/electronics10091002 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10348 | |
dc.description.abstract | The problem of the optimal operation of battery energy storage systems (BESSs) in AC grids is addressed in this paper from the point of view of multi-objective optimization. A nonlinear programming (NLP) model is presented to minimize the total emissions of contaminant gasses to the atmosphere and costs of daily energy losses simultaneously, considering the AC grid complete model. The BESSs are modeled with their linear relation between the state-of-charge and the active power injection/absorption. The Pareto front for the multi-objective optimization NLP model is reached through the general algebraic modeling system, i.e., GAMS, implementing the pondered optimization approach using weighting factors for each objective function. Numerical results in the IEEE 33-bus and IEEE 69-node test feeders demonstrate the multi-objective nature of this optimization problem and the multiple possibilities that allow the grid operators to carry out an efficient operation of their distribution networks when BESS and renewable energy resources are introduced. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolívar | spa |
dc.format.extent | 21 páginas | |
dc.format.medium | Recurso en línea / Electrónico | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | Electronics 2021, 10, 1002 | spa |
dc.title | Simultaneous Minimization of Energy Losses and Greenhouse Gas Emissions in AC Distribution Networks Using BESS | spa |
dcterms.bibliographicCitation | Valencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158 | spa |
dcterms.bibliographicCitation | Soroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. | spa |
dcterms.bibliographicCitation | Gonzalez, W.J.G.; Bocanegra, S.Y.; Serra, F.M.; Bueno-López, M.; Magaldi, G.L. Control Methods for Single-phase Voltage Supply with VSCs to Feed Nonlinear Loads in Rural Areas. Trans. Energy Syst. Eng. Appl. 2020, 1, 33–47 | spa |
dcterms.bibliographicCitation | Raugei, M.; Peluso, A.; Leccisi, E.; Fthenakis, V. Life-Cycle Carbon Emissions and Energy Return on Investment for 80% Domestic Renewable Electricity with Battery Storage in California (U.S.A.). Energies 2020, 13, 3934 | spa |
dcterms.bibliographicCitation | Gong, Z.; Chau, S.; Trescases, O. Quantifying the GHG Reduction versus Battery Size in Diesel Buses with Electrified HVAC. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020 | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488 | spa |
dcterms.bibliographicCitation | Weniger, J.; Tjaden, T.; Quaschning, V. Sizing of Residential PV Battery Systems. Energy Procedia 2014, 46, 78–87 | spa |
dcterms.bibliographicCitation | Subramaniam, U.; Vavilapalli, S.; Padmanaban, S.; Blaabjerg, F.; Holm-Nielsen, J.B.; Almakhles, D. A Hybrid PV-Battery System for ON-Grid and OFF-Grid Applications—Controller-In-Loop Simulation Validation. Energies 2020, 13, 755 | spa |
dcterms.bibliographicCitation | Zhu, Y.; Liu, C.; Wang, B.; Sun, K. Damping control for a target oscillation mode using battery energy storage. J. Mod. Power Syst. Clean Energy 2018, 6, 833–845 | spa |
dcterms.bibliographicCitation | Kisacikoglu, M.C.; Ozpineci, B.; Tolbert, L.M. Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA, 12–16 September 2010. | spa |
dcterms.bibliographicCitation | Mazza, A.; Mirtaheri, H.; Chicco, G.; Russo, A.; Fantino, M. Location and Sizing of Battery Energy Storage Units in Low Voltage Distribution Networks. Energies 2019, 13, 52 | spa |
dcterms.bibliographicCitation | Wang, Z.; Zhong, J.; Chen, D.; Lu, Y.; Men, K. A multi-period optimal power flow model including battery energy storage. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013 | spa |
dcterms.bibliographicCitation | Aghaei, J.; Bozorgavari, S.A.; Pirouzi, S.; Farahmand, H.; Korpås, M. Flexibility Planning of Distributed Battery Energy Storage Systems in Smart Distribution Networks. Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 44, 1105–1121 | spa |
dcterms.bibliographicCitation | Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. | spa |
dcterms.bibliographicCitation | Heine, P.; Hellman, H.P.; Pihkala, A.; Siilin, K. Battery Energy Storage for Distribution System—Case Helsinki. In Proceedings of the 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM), Kärdla, Estonia, 12–15 June 2019. | spa |
dcterms.bibliographicCitation | Almehizia, A.A.; Al-Ismail, F.S.; Alohali, N.S.; Al-Shammari, M.M. Assessment of battery storage utilization in distribution feeders. Energy Transit. 2020, 4, 101–112 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grajales, A.; Garces, A.; Castro, C.A. Distribution Systems Operation Considering Energy Storage Devices and Distributed Generation. IEEE Lat. Am. Trans. 2017, 15, 890–900 | spa |
dcterms.bibliographicCitation | Luna, A.C.; Diaz, N.L.; Andrade, F.; Graells, M.; Guerrero, J.M.; Vasquez, J.C. Economic power dispatch of distributed generators in a grid-connected microgrid. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015. | spa |
dcterms.bibliographicCitation | Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part I. IEEE Trans. Power Syst. 2013, 28, 2554–2564 | spa |
dcterms.bibliographicCitation | Mora, C.A.; Montoya, O.D.; Trujillo, E.R. Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS). Energies 2020, 13, 4386. | spa |
dcterms.bibliographicCitation | Grisales-Noreña, L.; Montoya, O.D.; Gil-González, W. Integration of energy storage systems in AC distribution networks: Optimal location, selecting, and operation approach based on genetic algorithms. J. Energy Storage 2019, 25, 100891 | spa |
dcterms.bibliographicCitation | Molzahn, D.K. Identifying and Characterizing Non-Convexities in Feasible Spaces of Optimal Power Flow Problems. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 672–676 | spa |
dcterms.bibliographicCitation | Berglund, F.; Zaferanlouei, S.; Korpås, M.; Uhlen, K. Optimal Operation of Battery Storage for a Subscribed Capacity-Based Power Tariff Prosumer—A Norwegian Case Study. Energies 2019, 12, 4450. | spa |
dcterms.bibliographicCitation | Denholm, P.; Sioshansi, R. The value of compressed air energy storage with wind in transmission-constrained electric power systems. Energy Policy 2009, 37, 3149–3158 | spa |
dcterms.bibliographicCitation | Mazaheri, H.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Farzin, H.; Moeini-Aghtaie, M. Investigating the impacts of energy storage systems on transmission expansion planning. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352 | spa |
dcterms.bibliographicCitation | Zia, M.F.; Elbouchikhi, E.; Benbouzid, M. Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations. Appl. Energy 2019, 237, 695–707 | spa |
dcterms.bibliographicCitation | Choi, J.; Park, W.K.; Lee, I.W. Economic Dispatch of Multiple Energy Storage Systems Under Different Characteristics. Energy Procedia 2017, 141, 216–221 | spa |
dcterms.bibliographicCitation | Farivar, M.; Low, S.H. Branch Flow Model: Relaxations and Convexification—Part II. IEEE Trans. Power Syst. 2013, 28, 2565–2572 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Selection and Location of BESS Systems in Medium-Voltage Rural Distribution Networks for Minimizing Greenhouse Gas Emissions. Electronics 2020, 9, 2097 | spa |
dcterms.bibliographicCitation | De Oliveira, L.S.; Saramago, S.F.P. Multiobjective optimization techniques applied to engineering problems. J. Braz. Soc. Mech. Sci. Eng. 2010, 32, 94–105. | spa |
dcterms.bibliographicCitation | Emmerich, M.T.M.; Deutz, A.H. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods. Nat. Comput. 2018, 17, 585–609 | spa |
dcterms.bibliographicCitation | López-Lezama, J.M. Optimal location of distributed generation in distribution systems using a model of nonlineal whole mixed programming. Tecnura 2011, 15, 101–110 | spa |
dcterms.bibliographicCitation | Ayodele, T.R.; Ogunjuyigbe, A.S.O.; Akinola, O.O. Optimal Location, Sizing, and Appropriate Technology Selection of Distributed Generators for Minimizing Power Loss Using Genetic Algorithm. J. Renew. Energy 2015, 2015, 832917 | spa |
dcterms.bibliographicCitation | Babu, P.V.; Singh, S. Optimal Placement of DG in Distribution Network for Power Loss Minimization Using NLP & PLS Technique. Energy Procedia 2016, 90, 441–454. | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Eng. J. 2020, 11, 409–418 | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J.; Hernandez-Escobedo, Q. Optimal Placement and Sizing of Wind Generators in AC Grids Considering Reactive Power Capability and Wind Speed Curves. Sustainability 2020, 12, 2983. | spa |
dcterms.bibliographicCitation | Porkar, S.; Poure, P.; Abbaspour-Tehrani-fard, A.; Saadate, S. A new framework for large distribution system optimal planning in a competitive electricity market. In Proceedings of the 2010 IEEE International Energy Conference, Manama, Bahrain, 18–22 December 2010 | spa |
dcterms.bibliographicCitation | Siahi, M.; Porkar, S.; Abbaspour-Tehrani-Fard, A.; Poure, P.; Saadate, S. Competitive distribution system planning model integration of dg, interruptible load and voltage regulator devices. Iran. J. Sci. Technol. Trans. Eng. 2010, 34, 619–635 | spa |
dcterms.bibliographicCitation | Kazmi, S.; Shahzad, M.; Shin, D. Multi-Objective Planning Techniques in Distribution Networks: A Composite Review. Energies 2017, 10, 208 | spa |
dcterms.bibliographicCitation | Soleymani, S.; Mozafari, B.; Kamarposhti, M. Optimal capacitor placement for power loss reduction and voltage stability enhancement in distribution systems. Trakia J. Sci. 2014, 12, 425–430 | spa |
dcterms.bibliographicCitation | Aman, M.; Jasmon, G.; Bakar, A.; Mokhlis, H.; Karimi, M. Optimum shunt capacitor placement in distribution system—A review and comparative study. Renew. Sustain. Energy Rev. 2014, 30, 429–439. | spa |
dcterms.bibliographicCitation | Thang, V.V.; Minh, N.D. Optimal Allocation and Sizing of Capacitors for Distribution Systems Reinforcement Based on Minimum Life Cycle Cost and Considering Uncertainties. Open Electr. Electron. Eng. J. 2017, 11, 165–176 | spa |
dcterms.bibliographicCitation | Naghiloo, A.; Abbaspour, M.; Mohammadi-Ivatloo, B.; Bakhtari, K. GAMS based approach for optimal design and sizing of a pressure retarded osmosis power plant in Bahmanshir river of Iran. Renew. Sustain. Energy Rev. 2015, 52, 1559–1565 | spa |
dcterms.bibliographicCitation | Ansari, A.; Abbaspour, M. Modelling and economic evaluation of pressure-retarded osmosis power plant case study: Iran. Int. J. Ambient Energy 2017, 40, 69–81 | spa |
dcterms.bibliographicCitation | Touati, K.; Tadeo, F. Green energy generation by pressure retarded osmosis: State of the art and technical advancement—review. Int. J. Green Energy 2016, 14, 337–360 | spa |
dcterms.bibliographicCitation | Ulanicki, B.; Bounds, P.L.M.; Rance, J.P. Using a GAMS Modelling Environment to Solve Network Scheduling Problems. Meas. Control 1999, 32, 110–115 | spa |
dcterms.bibliographicCitation | Tin-Loi, F. A GAMS model for the plastic limit analysis of plane frames. Appl. Math. Model. 1993, 17, 595–602 | spa |
dcterms.bibliographicCitation | Castillo, E.; Gonejo, A.J.; Pedregal, P.; Garciá, R.; Alguacil, N. Building and Solving Mathematical Programming Models in Engineering and Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001 | spa |
dcterms.bibliographicCitation | Andrei, N. Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2017 | spa |
dcterms.bibliographicCitation | Chen, S.; Gooi, H.; Wang, M. Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 2013, 60, 195–201 | spa |
dcterms.bibliographicCitation | Kim, J.; Moon, J.; Hwang, E.; Kang, P. Recurrent inception convolution neural network for multi short-term load forecasting. Energy Build. 2019, 194, 328–341 | spa |
dcterms.bibliographicCitation | Yang, X.; Xu, M.; Xu, S.; Han, X. Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining. Appl. Energy 2017, 206, 683–696. | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8 | spa |
dcterms.bibliographicCitation | Ou, G.; Murphey, Y.L. Multi-class pattern classification using neural networks. Pattern Recognit. 2007, 40, 4–18 | spa |
dcterms.bibliographicCitation | Yang, S.; Ting, T.; Man, K.; Guan, S.U. Investigation of Neural Networks for Function Approximation. Procedia Comput. Sci. 2013, 17, 586–594 | spa |
dcterms.bibliographicCitation | Tambouratzis, G.; Tambouratzis, T.; Tambouratzis, D. Clustering with artificial neural networks and traditional techniques. Int. J. Intell. Syst. 2003, 18, 405–428. | spa |
dcterms.bibliographicCitation | Tealab, A. Time series forecasting using artificial neural networks methodologies: A systematic review. Future Comput. Inform. J. 2018, 3, 334–340 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | 10.3390/electronics10091002 | |
dc.subject.keywords | Energy storage with batterie | spa |
dc.subject.keywords | Distribution networks | spa |
dc.subject.keywords | Economic dispatch approach | spa |
dc.subject.keywords | Energy purchasing costs | spa |
dc.subject.keywords | Mathematical programming | spa |
dc.subject.keywords | Multi-objective optimization | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Eléctrica | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.