Mostrar el registro sencillo del ítem
Advanced exergy and exergoeconomic analysis of a gas power system with steam Injection and air cooling with a compression refrigeration machine
dc.contributor.author | Caballero Barreto, Deibys | |
dc.contributor.author | Caballero Fajardo, Juan | |
dc.contributor.author | Carrillo Caballero, Gaylord Enrique | |
dc.contributor.author | Cardenas Escorcia, Yulineth | |
dc.coverage.spatial | Colombia | |
dc.date.accessioned | 2021-07-30T12:22:56Z | |
dc.date.available | 2021-07-30T12:22:56Z | |
dc.date.issued | 2021-03-03 | |
dc.date.submitted | 2021-07-29 | |
dc.identifier.citation | Deibys Barreto, Juan Fajardo, Gaylord Carrillo Caballero, Yulineth Cardenas Escorcia. Advanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine. 10.1002/ente.202000993 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10346 | |
dc.description.abstract | Gas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aiming to increase the output power and improve the thermal efficiency. Unfortunately, the lack of operational parameters for this system limited its characterization and implementation of strategies to improve its performance. Advanced exergetic and exergoeconomic analyses have been applied to improve energy and economic performance in steam injection gas turbine (STIG) cycle power plants with air cooling with a compression refrigeration machine. Results shows that the main sources of irreversibilities and higher costs are in the Combustion Chamber (CC), Heat Recovery Steam Generator (HRSG) and Gas Turbine (GT). From these components, the components of the HRSG and GT have the greatest potential for improvement, and this can be achieved by improving the overall configuration of the system, due to the fact that the destruction of exogenous exergy is in more significant measure avoidable. While the higher costs of investment can be reduced in the Combustion Chamber and Gas Turbine. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Energy Technology ente.202000993R2 | spa |
dc.title | Advanced exergy and exergoeconomic analysis of a gas power system with steam Injection and air cooling with a compression refrigeration machine | spa |
dcterms.bibliographicCitation | G. T. Udeh y P. O. Udeh, «Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant,» Renewable Energy, vol. 133, pp. 295-306, 2019. | spa |
dcterms.bibliographicCitation | A. De Sa y S. Al zubaidy, «Gas turbine performance at varying ambient temperature,» Applied Thermal Engineering, vol. 31, pp. 2735-2739, 2011. | spa |
dcterms.bibliographicCitation | G. Comodi, M. Renzi, F. Caresana y L. Pelagalli, «Enhancing Micro Gas Turbine Performance In Hot Climates Through Inlet Air Cooling Vapour Compression Technique,» Applied Energy, vol. 147, pp. 40- 48, 2015. | spa |
dcterms.bibliographicCitation | A. K. Mohapatra y Sanjay, «Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance,» Energy, vol. 68, pp. 191-203, 2014. | spa |
dcterms.bibliographicCitation | S. S. Baakeem, J. Orfi y H. Al-Ansary, «Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia,» Applied Thermal Engineering, 2018 | spa |
dcterms.bibliographicCitation | V. Zare, «Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorpion refrigetration, thermoeconomic analysis and multi-objetic optimization,» Energy conversion and Management, vol. 215, p. 112946, 2020. | spa |
dcterms.bibliographicCitation | R. Xue, C. Hu, V. Sethi, T. Nikolaidis y P. Pilidis, «Effect of steam addition on gas turbine combustor design and performance,» Applied Thermal Engineering, 2016. | spa |
dcterms.bibliographicCitation | S.-J. Zhang, J.-L. Chi y Y.-H. Xiao, «Performance analysis of a partial oxidation steam injected gas turbine cycle,» Applied Thermal Engineering, vol. 91, pp. 622-629, 2015 | spa |
dcterms.bibliographicCitation | A. Shukla y O. Singh, «Performance Evaluation of Steam Injected Gas Turbine Based Power Plant With Inlet Evaporative Cooling,» Applied Thermal Engineering, vol. 102, pp. 454-464, 2016. | spa |
dcterms.bibliographicCitation | A. K. Shukla y O. Singh, «Thermodynamic analysis of stem-injected gas turbine cycle power plant with inlet air cooling,» International journal of ambient energy, pp. 1-26, 2016. | spa |
dcterms.bibliographicCitation | A. K. Shukla y O. Singh, «Thermodynamic Investigation of Parameter Affecting the Execution of Stem Injected Cooled Gas Turbine Based Combined Cycle Power Plant with Vapor Absorption Inlet Air Cooling,» Applied Thermal Engineeing, vol. 122, pp. 380-388, 2017. | spa |
dcterms.bibliographicCitation | H. Athari, S. Soltani, M. Rosen, S. Mohmoudi y T. Morosuk, «Gas turbine stema injection and combined power cycles using fog inlet cooling and biomass fuel: A Thermodynamic assessment,» Renewable Energy, pp. 95 - 103, 2016. | spa |
dcterms.bibliographicCitation | ] H. Athari, S. Soltani, M. Rosen, M. Kordoghli y T. Morosuk, «Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel,» Renewable Energy, pp. 715 - 726, 2016. | spa |
dcterms.bibliographicCitation | A. Keçebas¸ y H. Gökgedik, «Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis,» Energy, vol. 88, pp. 746-755, 2015 | spa |
dcterms.bibliographicCitation | E. Acikkalp, h. Aras y A. Hepbasil, «Advanced exergy analysis of an electricity-generating facility using natural gas,» Energy Conversion and Management, vol. 82, pp. 146-153, 2014. | spa |
dcterms.bibliographicCitation | F. A. Boyahchi y H. Molaine, «Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method,» Energy Conversion and Management, vol. 99, pp. 374 - 386, 2015. | spa |
dcterms.bibliographicCitation | ] E. Acikkalp, H. Aras y A. Hepbasli, «Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine,» Applied Thermal Engineering, vol. 67, pp. 388-395, 2014. | spa |
dcterms.bibliographicCitation | S. Anvari, R. Saray y K. Bahlouli, «Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production,» Energy, vol. 91, pp. 925-939, 2015 | spa |
dcterms.bibliographicCitation | S. Anvari, R. Saray y K. Bahlouli, «Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production,» Energy, vol. 91, pp. 925-939, 2015 | spa |
dcterms.bibliographicCitation | ] Y. Sohret, E. Acikkalp, A. Hepbasli y T. H. Karakoc, «Advanced exergy analysis of an aircraft gas turbine engine: SPlitting exergy destructios into parts,» Energy, pp. 1219-1228, 2015. | spa |
dcterms.bibliographicCitation | D. Barreto, J. Fajardo y J. Campillo, «Determination of the optimal range of the compressor inlet air temperature in a power plant with Stig cycle through of advanced exergetic analysis,» IMECE, nº IMECE2019-10410, 2020 | spa |
dcterms.bibliographicCitation | Y. A. Cengel y M. A. Boles, Thermodinamic, Mc Graw Hill, 2014. | spa |
dcterms.bibliographicCitation | S. Sanaye, M. Amani y P. Amani, «4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection,» Sustainable Energy Technologies and Assessments, vol. 29, pp. 70-81, 2018. | spa |
dcterms.bibliographicCitation | A. Bejan, G. Tsatsaronis y M. Moran, Thermal Desing and Optimazation, New York: John Wiley & Sons, 1996. | spa |
dcterms.bibliographicCitation | ] H. Athari, S. Soltani, M. Rosen, S. M. Seyed Mahmoudi y T. Morosuk, «Comparative Exergoeconomic Analyses od Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling,» Sustainability, vol. 7, pp. 12236-12257, 2015. | spa |
dcterms.bibliographicCitation | M. Aminyavari, A. H. Mamaghani, A. Shirazi, B. Najafi y F. Rinaldi, «Exergetic, Economic, and Enviromental Evaluations and Multi-objetive Optimization of an Internal-Reforming SOFC-Gas Turbine Cycle Coupled with a Rankine Cycle,» Applied Thermal Enginering, 2016. | spa |
dcterms.bibliographicCitation | T. Morosuk y G. Tsatsaronis, «Advanced exergetic evaluation of refrigeration machines using different wirking fluids,» Energy, vol. 34, pp. 2248-2258, 2009. | spa |
dcterms.bibliographicCitation | ] R. Huang, J. Ling y V. Aute, «Comparison of approximation-assisted heat exchanger models for steadystate simulation of vapor compression system,» Applied Thermal Engineering, vol. 166, p. 114691, 2020. | spa |
dcterms.bibliographicCitation | ] Z. Li, E. Chen, Y. Jing y S. Lv, «Thermodynamic relationship of subcooling power and increase of cooling output in vapor compression chiller,» Energy Conversion Management, vol. 149, pp. 254-262, 2017. | spa |
dcterms.bibliographicCitation | I. Dincer y M. Rosen, Exergy: energy, environment, and sustainable development, segunda ed., Oxford: ELSEVIER, 2013. | spa |
dcterms.bibliographicCitation | T. Kotas, The exergy method of Thermal Power Plants, Londres: Anchon Brendon, 1985. | spa |
dcterms.bibliographicCitation | R. Yumrutas, M. Kunduz y M. Kano, «Exergy analysis of vapor compression refrigeration systems,» Exergy an International Journal, vol. 2, pp. 266-272, 2002. | spa |
dcterms.bibliographicCitation | ] M. D'Acaddia y L. Vanoli, «Thermoeconomic optimization of the condenser in a vapour compression heat pump,» International Journal of Refrigeration, vol. 25, pp. 433-441, 2004 | spa |
dcterms.bibliographicCitation | Szargut, «Egzergia. Poradnik obliczania I stosowania, Widawnictwo Politechniki Shlaskej,» Gliwice, 2007 | spa |
dcterms.bibliographicCitation | ] M. Mansouri, P. Ahmadi, A. Kaviri y M. Jaafar, «Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants,» Energy Conversion and Management, vol. 58, p. 47–58, (2012). | spa |
dcterms.bibliographicCitation | A. Abusoglu y M. Kanoglu, «Exergetic and thermoeconomic analyses of diesel engine powered,» Applied Thermal Engineering, vol. 29, pp. 234 - 241, 2008. | spa |
dcterms.bibliographicCitation | M. Mehrpooya, M. M. Moftakhari Sharifzadeh y H. Ansarinasab, «Investigation of a novel integrated process configuration for natural gas liquefaction and nitrogen removal by advanced exergoeconomic analysis,» Applied Thermal Engineering, 2017 | spa |
dcterms.bibliographicCitation | Ligang Wang , Yongping Yang, T. Morosuk y G. Tsatsaronis, «Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant,» Energies, pp. 1850-1863, 2012. | spa |
dcterms.bibliographicCitation | S. Anvavi, R. Khoshbakhti Saray y K. Bahlouli, «Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system,» Applied Thermal Engineering, 2016. | spa |
dcterms.bibliographicCitation | P. Kelly, G. Tsatsaronis y T. Morosuk, «Advanced exergetic analysis:Approaches for splitting the exergy destruction into endogenous and exogenous parts,» Energy, pp. 384 - 391, 2009. | spa |
dcterms.bibliographicCitation | S. Soltani, M. Yari, S. Mahmoudi, T. Morosuk y M. Rosen, «Advanced exergy applied to an exernallyfired combined-cycle power plant integrated with biomass gasification unit,» Energy, vol. 59, pp. 775- 780, 2013. | spa |
dcterms.bibliographicCitation | J. Chen, H. Havtun y B. Palm, «Conventional and advanced exergy analysis of an ejector refrigeration system,» Applied Energy, vol. 144, pp. 139-151, 2015. | spa |
dcterms.bibliographicCitation | M. Fallah, H. Siyahi, R. Akbarpour Ghiasi, S. Mahmoudi, M. Yari y M. Rosen, «Comparison of different gas turbine cycles and advanced exergy analysis of the most effective,» Energy, pp. 701-715, 2016. | spa |
dcterms.bibliographicCitation | ] S. Anvari, R. Saray y K. Bahlouli, «Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production,» Energy, vol. 91, pp. 925-939, 2015 | spa |
dcterms.bibliographicCitation | A. Palizdar y S. Sadrameli, «Conventional and advanced exergoecnomic analyses applied to ethylene refrigeration system of an existing olefin plant,» Energy Conversion and Management, vol. 138, pp. 474- 485, 2017. | spa |
dcterms.bibliographicCitation | T. Morosuk y G. Tsatsaronis, «Advanced exergy-based methods used to understand and improve energyconversion systems,» Energy, 2018. | spa |
dcterms.bibliographicCitation | H. Ansarinasab y M. Mehrpooya, «Advanced exergoeconomic analysis of a novel process for production of LGN by using a single effect absortion refrigeration cycle,» Applied Thermal Engneering, vol. 114, pp. 719-732, 2017. | spa |
dcterms.bibliographicCitation | F-Chart Software, EES "Engineering Equation Solver", Wisconsin, 2018 | spa |
dcterms.bibliographicCitation | M. Mehrpooya, H. Ansarinasab, M. M. Moftakhari Sharifzadeh y M. A. Rosen, «Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit,» Energy Conversion and Management, vol. 163, pp. 151-168, 2018 | spa |
dcterms.bibliographicCitation | A. Shirazi, M. Aminyavari, B. Najafi, F. Rinaldi y M. Razaghi, «Thermal-economic-enviromental analysis and multi-objetive optimization of an internal-reforming solid oxide fuel cell-gas trubine hybrid system,» Invernational Journal of Hydrogen Energy, vol. 37, pp. 19111-19124, 2012. | spa |
dcterms.bibliographicCitation | P. Ahmadi y I. Dincer, «Exergoeconomics,» de Comprehensive Energy System, Elservier, 2018, pp. 340- 375 | spa |
dcterms.bibliographicCitation | A. Alashkar y M. Gadalla, «Thermo-economic analysis of an integrated solar power generation system using nanofluids,» Applied Energy, vol. 191, pp. 469-491, 2017. | spa |
dcterms.bibliographicCitation | F. Mohammadkhani, N. Shokati, S. Mahmoudi, M. Yari y M. Rosen, «Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles,» Energy, vol. 65, pp. 533-543, 2014. | spa |
dcterms.bibliographicCitation | N. Shokati y S. Khanahmadzadeh, «The effect of different combinatios of ammonia-water Rankine and absortion refrigeration cycles on the exergoeconomic performance of the cogeneration cycle,» Applied Thermal Engineering, vol. 141, pp. 1141-1160, 2018. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | 10.1002/ente.202000993 | |
dc.subject.keywords | Exergy | spa |
dc.subject.keywords | Exergoeconomic | spa |
dc.subject.keywords | Sting Cycle | spa |
dc.subject.keywords | Brayton Cycle | spa |
dc.subject.keywords | Steam Injection | spa |
dc.subject.keywords | Compression Cooling System | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.format.size | 56 páginas | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.