Mostrar el registro sencillo del ítem

dc.contributor.authorCaballero Barreto, Deibys
dc.contributor.authorCaballero Fajardo, Juan
dc.contributor.authorCarrillo Caballero, Gaylord Enrique
dc.contributor.authorCardenas Escorcia, Yulineth
dc.coverage.spatialColombia
dc.date.accessioned2021-07-30T12:22:56Z
dc.date.available2021-07-30T12:22:56Z
dc.date.issued2021-03-03
dc.date.submitted2021-07-29
dc.identifier.citationDeibys Barreto, Juan Fajardo, Gaylord Carrillo Caballero, Yulineth Cardenas Escorcia. Advanced Exergy and Exergoeconomic Analysis of a Gas Power System with Steam Injection and Air Cooling with a Compression Refrigeration Machine. 10.1002/ente.202000993spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10346
dc.description.abstractGas turbine power plants have been widely studied, and as a result the negative effects on their output power and thermal efficiency have been known when operating in atmospheric conditions exceeding ISO conditions. For this reason, different technologies and methodologies have been implemented, aiming to increase the output power and improve the thermal efficiency. Unfortunately, the lack of operational parameters for this system limited its characterization and implementation of strategies to improve its performance. Advanced exergetic and exergoeconomic analyses have been applied to improve energy and economic performance in steam injection gas turbine (STIG) cycle power plants with air cooling with a compression refrigeration machine. Results shows that the main sources of irreversibilities and higher costs are in the Combustion Chamber (CC), Heat Recovery Steam Generator (HRSG) and Gas Turbine (GT). From these components, the components of the HRSG and GT have the greatest potential for improvement, and this can be achieved by improving the overall configuration of the system, due to the fact that the destruction of exogenous exergy is in more significant measure avoidable. While the higher costs of investment can be reduced in the Combustion Chamber and Gas Turbine.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergy Technology ente.202000993R2spa
dc.titleAdvanced exergy and exergoeconomic analysis of a gas power system with steam Injection and air cooling with a compression refrigeration machinespa
dcterms.bibliographicCitationG. T. Udeh y P. O. Udeh, «Comparative thermo-economic analysis of multi-fuel fired gas turbine power plant,» Renewable Energy, vol. 133, pp. 295-306, 2019.spa
dcterms.bibliographicCitationA. De Sa y S. Al zubaidy, «Gas turbine performance at varying ambient temperature,» Applied Thermal Engineering, vol. 31, pp. 2735-2739, 2011.spa
dcterms.bibliographicCitationG. Comodi, M. Renzi, F. Caresana y L. Pelagalli, «Enhancing Micro Gas Turbine Performance In Hot Climates Through Inlet Air Cooling Vapour Compression Technique,» Applied Energy, vol. 147, pp. 40- 48, 2015.spa
dcterms.bibliographicCitationA. K. Mohapatra y Sanjay, «Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance,» Energy, vol. 68, pp. 191-203, 2014.spa
dcterms.bibliographicCitationS. S. Baakeem, J. Orfi y H. Al-Ansary, «Performance improvement of gas turbine power plants by utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia,» Applied Thermal Engineering, 2018spa
dcterms.bibliographicCitationV. Zare, «Performance improvement of biomass-fueled closed cycle gas turbine via compressor inlet cooling using absorpion refrigetration, thermoeconomic analysis and multi-objetic optimization,» Energy conversion and Management, vol. 215, p. 112946, 2020.spa
dcterms.bibliographicCitationR. Xue, C. Hu, V. Sethi, T. Nikolaidis y P. Pilidis, «Effect of steam addition on gas turbine combustor design and performance,» Applied Thermal Engineering, 2016.spa
dcterms.bibliographicCitationS.-J. Zhang, J.-L. Chi y Y.-H. Xiao, «Performance analysis of a partial oxidation steam injected gas turbine cycle,» Applied Thermal Engineering, vol. 91, pp. 622-629, 2015spa
dcterms.bibliographicCitationA. Shukla y O. Singh, «Performance Evaluation of Steam Injected Gas Turbine Based Power Plant With Inlet Evaporative Cooling,» Applied Thermal Engineering, vol. 102, pp. 454-464, 2016.spa
dcterms.bibliographicCitationA. K. Shukla y O. Singh, «Thermodynamic analysis of stem-injected gas turbine cycle power plant with inlet air cooling,» International journal of ambient energy, pp. 1-26, 2016.spa
dcterms.bibliographicCitationA. K. Shukla y O. Singh, «Thermodynamic Investigation of Parameter Affecting the Execution of Stem Injected Cooled Gas Turbine Based Combined Cycle Power Plant with Vapor Absorption Inlet Air Cooling,» Applied Thermal Engineeing, vol. 122, pp. 380-388, 2017.spa
dcterms.bibliographicCitationH. Athari, S. Soltani, M. Rosen, S. Mohmoudi y T. Morosuk, «Gas turbine stema injection and combined power cycles using fog inlet cooling and biomass fuel: A Thermodynamic assessment,» Renewable Energy, pp. 95 - 103, 2016.spa
dcterms.bibliographicCitation] H. Athari, S. Soltani, M. Rosen, M. Kordoghli y T. Morosuk, «Exergoeconomic study of gas turbine steam injection and combined power cycles using fog inlet cooling and biomass fuel,» Renewable Energy, pp. 715 - 726, 2016.spa
dcterms.bibliographicCitationA. Keçebas¸ y H. Gökgedik, «Thermodynamic evaluation of a geothermal power plant for advanced exergy analysis,» Energy, vol. 88, pp. 746-755, 2015spa
dcterms.bibliographicCitationE. Acikkalp, h. Aras y A. Hepbasil, «Advanced exergy analysis of an electricity-generating facility using natural gas,» Energy Conversion and Management, vol. 82, pp. 146-153, 2014.spa
dcterms.bibliographicCitationF. A. Boyahchi y H. Molaine, «Sensitivity analysis of exergy destruction in a real combined cycle power plant based on advanced exergy method,» Energy Conversion and Management, vol. 99, pp. 374 - 386, 2015.spa
dcterms.bibliographicCitation] E. Acikkalp, H. Aras y A. Hepbasli, «Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine,» Applied Thermal Engineering, vol. 67, pp. 388-395, 2014.spa
dcterms.bibliographicCitationS. Anvari, R. Saray y K. Bahlouli, «Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production,» Energy, vol. 91, pp. 925-939, 2015spa
dcterms.bibliographicCitationS. Anvari, R. Saray y K. Bahlouli, «Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production,» Energy, vol. 91, pp. 925-939, 2015spa
dcterms.bibliographicCitation] Y. Sohret, E. Acikkalp, A. Hepbasli y T. H. Karakoc, «Advanced exergy analysis of an aircraft gas turbine engine: SPlitting exergy destructios into parts,» Energy, pp. 1219-1228, 2015.spa
dcterms.bibliographicCitationD. Barreto, J. Fajardo y J. Campillo, «Determination of the optimal range of the compressor inlet air temperature in a power plant with Stig cycle through of advanced exergetic analysis,» IMECE, nº IMECE2019-10410, 2020spa
dcterms.bibliographicCitationY. A. Cengel y M. A. Boles, Thermodinamic, Mc Graw Hill, 2014.spa
dcterms.bibliographicCitationS. Sanaye, M. Amani y P. Amani, «4E modeling and multi-criteria optimization of CCHPW gas turbine plant with inlet air cooling and steam injection,» Sustainable Energy Technologies and Assessments, vol. 29, pp. 70-81, 2018.spa
dcterms.bibliographicCitationA. Bejan, G. Tsatsaronis y M. Moran, Thermal Desing and Optimazation, New York: John Wiley & Sons, 1996.spa
dcterms.bibliographicCitation] H. Athari, S. Soltani, M. Rosen, S. M. Seyed Mahmoudi y T. Morosuk, «Comparative Exergoeconomic Analyses od Gas Turbine Steam Injection Cycles with and without Fogging Inlet Cooling,» Sustainability, vol. 7, pp. 12236-12257, 2015.spa
dcterms.bibliographicCitationM. Aminyavari, A. H. Mamaghani, A. Shirazi, B. Najafi y F. Rinaldi, «Exergetic, Economic, and Enviromental Evaluations and Multi-objetive Optimization of an Internal-Reforming SOFC-Gas Turbine Cycle Coupled with a Rankine Cycle,» Applied Thermal Enginering, 2016.spa
dcterms.bibliographicCitationT. Morosuk y G. Tsatsaronis, «Advanced exergetic evaluation of refrigeration machines using different wirking fluids,» Energy, vol. 34, pp. 2248-2258, 2009.spa
dcterms.bibliographicCitation] R. Huang, J. Ling y V. Aute, «Comparison of approximation-assisted heat exchanger models for steadystate simulation of vapor compression system,» Applied Thermal Engineering, vol. 166, p. 114691, 2020.spa
dcterms.bibliographicCitation] Z. Li, E. Chen, Y. Jing y S. Lv, «Thermodynamic relationship of subcooling power and increase of cooling output in vapor compression chiller,» Energy Conversion Management, vol. 149, pp. 254-262, 2017.spa
dcterms.bibliographicCitationI. Dincer y M. Rosen, Exergy: energy, environment, and sustainable development, segunda ed., Oxford: ELSEVIER, 2013.spa
dcterms.bibliographicCitationT. Kotas, The exergy method of Thermal Power Plants, Londres: Anchon Brendon, 1985.spa
dcterms.bibliographicCitationR. Yumrutas, M. Kunduz y M. Kano, «Exergy analysis of vapor compression refrigeration systems,» Exergy an International Journal, vol. 2, pp. 266-272, 2002.spa
dcterms.bibliographicCitation] M. D'Acaddia y L. Vanoli, «Thermoeconomic optimization of the condenser in a vapour compression heat pump,» International Journal of Refrigeration, vol. 25, pp. 433-441, 2004spa
dcterms.bibliographicCitationSzargut, «Egzergia. Poradnik obliczania I stosowania, Widawnictwo Politechniki Shlaskej,» Gliwice, 2007spa
dcterms.bibliographicCitation] M. Mansouri, P. Ahmadi, A. Kaviri y M. Jaafar, «Exergetic and economic evaluation of the effect of HRSG configurations on the performance of combined cycle power plants,» Energy Conversion and Management, vol. 58, p. 47–58, (2012).spa
dcterms.bibliographicCitationA. Abusoglu y M. Kanoglu, «Exergetic and thermoeconomic analyses of diesel engine powered,» Applied Thermal Engineering, vol. 29, pp. 234 - 241, 2008.spa
dcterms.bibliographicCitationM. Mehrpooya, M. M. Moftakhari Sharifzadeh y H. Ansarinasab, «Investigation of a novel integrated process configuration for natural gas liquefaction and nitrogen removal by advanced exergoeconomic analysis,» Applied Thermal Engineering, 2017spa
dcterms.bibliographicCitationLigang Wang , Yongping Yang, T. Morosuk y G. Tsatsaronis, «Advanced Thermodynamic Analysis and Evaluation of a Supercritical Power Plant,» Energies, pp. 1850-1863, 2012.spa
dcterms.bibliographicCitationS. Anvavi, R. Khoshbakhti Saray y K. Bahlouli, «Employing a new optimization strategy based on advanced exergy concept for improvement of a tri-generation system,» Applied Thermal Engineering, 2016.spa
dcterms.bibliographicCitationP. Kelly, G. Tsatsaronis y T. Morosuk, «Advanced exergetic analysis:Approaches for splitting the exergy destruction into endogenous and exogenous parts,» Energy, pp. 384 - 391, 2009.spa
dcterms.bibliographicCitationS. Soltani, M. Yari, S. Mahmoudi, T. Morosuk y M. Rosen, «Advanced exergy applied to an exernallyfired combined-cycle power plant integrated with biomass gasification unit,» Energy, vol. 59, pp. 775- 780, 2013.spa
dcterms.bibliographicCitationJ. Chen, H. Havtun y B. Palm, «Conventional and advanced exergy analysis of an ejector refrigeration system,» Applied Energy, vol. 144, pp. 139-151, 2015.spa
dcterms.bibliographicCitationM. Fallah, H. Siyahi, R. Akbarpour Ghiasi, S. Mahmoudi, M. Yari y M. Rosen, «Comparison of different gas turbine cycles and advanced exergy analysis of the most effective,» Energy, pp. 701-715, 2016.spa
dcterms.bibliographicCitation] S. Anvari, R. Saray y K. Bahlouli, «Conventional and advanced exergetic and exergoeconomic analyses applied to a tri-generation cycle for heat, cold and power production,» Energy, vol. 91, pp. 925-939, 2015spa
dcterms.bibliographicCitationA. Palizdar y S. Sadrameli, «Conventional and advanced exergoecnomic analyses applied to ethylene refrigeration system of an existing olefin plant,» Energy Conversion and Management, vol. 138, pp. 474- 485, 2017.spa
dcterms.bibliographicCitationT. Morosuk y G. Tsatsaronis, «Advanced exergy-based methods used to understand and improve energyconversion systems,» Energy, 2018.spa
dcterms.bibliographicCitationH. Ansarinasab y M. Mehrpooya, «Advanced exergoeconomic analysis of a novel process for production of LGN by using a single effect absortion refrigeration cycle,» Applied Thermal Engneering, vol. 114, pp. 719-732, 2017.spa
dcterms.bibliographicCitationF-Chart Software, EES "Engineering Equation Solver", Wisconsin, 2018spa
dcterms.bibliographicCitationM. Mehrpooya, H. Ansarinasab, M. M. Moftakhari Sharifzadeh y M. A. Rosen, «Conventional and advanced exergoeconomic assessments of a new air separation unit integrated with a carbon dioxide electrical power cycle and a liquefied natural gas regasification unit,» Energy Conversion and Management, vol. 163, pp. 151-168, 2018spa
dcterms.bibliographicCitationA. Shirazi, M. Aminyavari, B. Najafi, F. Rinaldi y M. Razaghi, «Thermal-economic-enviromental analysis and multi-objetive optimization of an internal-reforming solid oxide fuel cell-gas trubine hybrid system,» Invernational Journal of Hydrogen Energy, vol. 37, pp. 19111-19124, 2012.spa
dcterms.bibliographicCitationP. Ahmadi y I. Dincer, «Exergoeconomics,» de Comprehensive Energy System, Elservier, 2018, pp. 340- 375spa
dcterms.bibliographicCitationA. Alashkar y M. Gadalla, «Thermo-economic analysis of an integrated solar power generation system using nanofluids,» Applied Energy, vol. 191, pp. 469-491, 2017.spa
dcterms.bibliographicCitationF. Mohammadkhani, N. Shokati, S. Mahmoudi, M. Yari y M. Rosen, «Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles,» Energy, vol. 65, pp. 533-543, 2014.spa
dcterms.bibliographicCitationN. Shokati y S. Khanahmadzadeh, «The effect of different combinatios of ammonia-water Rankine and absortion refrigeration cycles on the exergoeconomic performance of the cogeneration cycle,» Applied Thermal Engineering, vol. 141, pp. 1141-1160, 2018.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1002/ente.202000993
dc.subject.keywordsExergyspa
dc.subject.keywordsExergoeconomicspa
dc.subject.keywordsSting Cyclespa
dc.subject.keywordsBrayton Cyclespa
dc.subject.keywordsSteam Injectionspa
dc.subject.keywordsCompression Cooling Systemspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.format.size56 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.