Mostrar el registro sencillo del ítem

dc.contributor.authorDe la Hoz Domínguez, Enrique José
dc.contributor.authorZuluaga Ortiz, Rohemi Alfredo
dc.contributor.authorMendoza, Adel
dc.coverage.spatialColombia
dc.date.accessioned2021-07-30T12:20:57Z
dc.date.available2021-07-30T12:20:57Z
dc.date.issued2021-03-31
dc.date.submitted2021-07-29
dc.identifier.citationDe La Hoz, E., Zuluaga, R. and Mendoza, A. (2021) ’Assessing and Classification of Academic Efficiency in Engineering Teaching Programs’, Journal on Efficiency and Responsibility in Education and Science, vol. 14, no. 1, pp. 41-52 https://doi.org/10.7160/eriesj.2021.140104.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10344
dc.description.abstractThis research uses a three-phase method to evaluate and forecast the academic efficiency of engineering programs. In the first phase, university profiles are created through cluster analysis. In the second phase, the academic efficiency of these profiles is evaluated through Data Envelopment Analysis. Finally, a machine learning model is trained and validated to forecast the categories of academic efficiency. The study population corresponds to 256 university engineering programs in Colombia and the data correspond to the national examination of the quality of education in Colombia in 2018. In the results, two university profiles were identified with efficiency levels of 92.3% and 97.3%, respectively. The Random Forest model presents an Area under ROC value of 95.8% in the prediction of the efficiency profiles. The proposed structure evaluates and predicts university programs’ academic efficiency, evaluating the efficiency between institutions with similar characteristics, avoiding a negative bias toward those institutions that host students with low educational levels.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEfficiency and Responsibility in Education and Science, vol. 14, no. 1, pp. 41-52spa
dc.titleAssessing and classification of academic efficiency in engineering teaching programsspa
dcterms.bibliographicCitationAgasisti, T., Munda, G. and Hippe, R. (2019) ‘Measuring the efficiency of European education systems by combining Data Envelopment Analysis and Multiple-Criteria Evaluation’, Journal of Productivity Analysis, Vol. 51, No. 2, pp. 105–124. https://doi.org/10.1007/s11123-019-00549-6spa
dcterms.bibliographicCitationAldamak, A. and Zolfaghari, S. (2017) ‘Review of efficiency ranking methods in data envelopment analysis’, Measurement, Vol. 106, pp. 161–172. https://doi.org/10.1016/j.measurement.2017.04.028spa
dcterms.bibliographicCitationAlsabawy, A. Y., Cater-Steel, A. and Soar, J. (2016) ‘Determinants of Perceived Usefulness of e-Learning Systems’, Computers in Human Behavior, Vol. 64, pp. 843–858. https://doi.org/10.1016/j.chb.2016.07.065spa
dcterms.bibliographicCitationAmara, N., Rhaiem, M. and Halilem, N. (2020) ‘Assessing the research efficiency of Canadian scholars in the management field: Evidence from the DEA and fsQCA’, Journal of Business Research, Vol. 115, pp. 296–306. https://doi.org/10.1016/j.jbusres.2019.10.059spa
dcterms.bibliographicCitationAparicio, J., Cordero, J. M. and Ortiz, L. (2019) ‘Measuring efficiency in education: The influence of imprecision and variability in data on DEA estimates’, Socio-Economic Planning Sciences, Vol. 68, 100698. https://doi.org/10.1016/j.seps.2019.03.004spa
dcterms.bibliographicCitationAparicio, J., Perelman, S. and Santín, D. (2020) ‘Comparing the evolution of productivity and performance gaps in education systems through DEA: an application to Latin American countries’, Operational Research: An International Journal. https://doi.org/10.1007/s12351-020-00578-2spa
dcterms.bibliographicCitationBenicio, J. and Mello, J. C. S. de (2015) ‘Productivity Analysis and Variable Returns of Scale: DEA Efficiency Frontier Interpretation’, Procedia Computer Science, Vol. 55, pp. 341–349. https://doi.org/10.1016/j.procs.2015.07.059spa
dcterms.bibliographicCitationBerens, J., Schneider, K., Gortz, S., Oster, S. and Burghoff, J. (2019) ‘Early Detection of Students at Risk - Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods’, Journal of Educational Data Mining, Vol. 11, No. 3, pp. 1–41. https://doi.org/10.5281/zenodo.3594771spa
dcterms.bibliographicCitationBianchi, N. and Giorcelli, M. (2020) ‘Scientific Education and Innovation: From Technical Diplomas to University Stem Degrees’, Journal of the European Economic Association, Vol. 18, No. 5, pp. 2608-2646. https://doi.org/10.1093/jeea/jvz049spa
dcterms.bibliographicCitationBreiman, L. (2001) ‘Random Forests’, Machine Learning, Vol. 45, No. 1, pp. 5-32. https://doi.org/10.1023/A:1010933404324spa
dcterms.bibliographicCitationCharnes, A., Cooper, W. W. and Rhodes, E. (1978) ‘Measuring the efficiency of decision making units’, European Journal of Operational Research, Vol. 2, No. 6, pp. 429–444. https://doi.org/10.1016/0377-2217(78)90138-8spa
dcterms.bibliographicCitationClayman, C. L., Srinivasan, S. M. and Sangwan, R. S. (2020) ‘K-means Clustering and Principal Components Analysis of Microarray Data of L1000 Landmark Genes’, Procedia Computer Science, Vol. 168, pp. 97-104. https://doi.org/10.1016/j.procs.2020.02.265spa
dcterms.bibliographicCitationCorlu, M. A. and Aydin, E. (2016) ‘Evaluation of Learning Gains Through Integrated STEM Projects’, International Journal of Education in Mathematics, Science and Technology, Vol. 4, No. 1, pp. 20–29. https://doi.org/10.18404/ijemst.35021spa
dcterms.bibliographicCitationde Morais, A. M., Araújo, J. M. F. R. and Costa, E. B. (2014) ‘Monitoring student performance using data clustering and predictive modelling’, In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1–8. https://doi.org/10.1109/FIE.2014.7044401spa
dcterms.bibliographicCitationDelahoz-Dominguez, E., Zuluaga, R. and Fontalvo-Herrera, T. (2020) ‘Dataset of academic performance evolution for engineering students’, Data in Brief, Vol. 30, 105537. https://doi.org/10.1016/j.dib.2020.105537spa
dcterms.bibliographicCitationDuan, S. X. (2019) ‘Measuring university efficiency: An application of data envelopment analysis and strategic group analysis to Australian universities’, Benchmarking: An International Journal, Vol. 26, No. 4, pp. 1161–1173. https://doi.org/10.1108/BIJ-10-2017-0274spa
dcterms.bibliographicCitationDurairaj, M. and Vijitha, C. (2014) ‘Educational data mining for prediction of student performance using clustering algorithms’, International Journal of Computer Science and Information Technologies, Vol. 5, No. 4, pp. 5987–5991.spa
dcterms.bibliographicCitationFerro, G. and D’Elia, V. (2020) ‘Higher Education Efficiency Frontier Analysis: A Review of Variables to Consider’, Vol. 13, No. 3, 140-153. https://doi.org/10.7160/eriesj.2020.130304spa
dcterms.bibliographicCitationFuentes, R., Fuster, B. and Lillo-Bañuls, A. (2016) ‘A three-stage DEA model to evaluate learning-teaching technical efficiency: Key performance indicators and contextual variables’, Expert Systems with Applications, Vol. 48, pp. 89–99. https://doi.org/10.1016/j.eswa.2015.11.022spa
dcterms.bibliographicCitationGhasemi, N., Najafi, E., Hoseinzadeh Lotfi, F. and Movahedi Sobhani, F. (2020) ‘Assessing the performance of organizations with the hierarchical structure using data envelopment analysis: An efficiency analysis of Farhangian University’, Measurement, Vol. 156, 107609. https://doi.org/10.1016/j.measurement.2020.107609spa
dcterms.bibliographicCitationGralka, S., Wohlrabe, K. and Bornmann, L. (2019) ‘How to measure research efficiency in higher education? Research grants vs. publication output’, Journal of Higher Education Policy and Management, Vol. 41, No. 3, pp. 322–341. https://doi.org/10.1080/1360080X.2019.1588492spa
dcterms.bibliographicCitationGranadillo, E. D. L. H., Gomez, J. M. and Herrera, T. J. F. (2019) ‘Methodology with multivariate calculation to define and evaluate financial productivity profiles of the chemical sector in Colombia’, International Journal of Productivity and Quality Management, Vol. 27, No. 2, pp. 144–160. https://doi.org/10.1504/IJPQM.2019.100141spa
dcterms.bibliographicCitationHeidrich, L., Victória Barbosa, J. L., Cambruzzi, W., Rigo, S. J., Martins, M. G. and dos Santos, R. B. S. (2018) ‘Diagnosis of learner dropout based on learning styles for online distance learning’, Telematics and Informatics, Vol. 35, No. 6, pp. 1593–1606. https://doi.org/10.1016/j.tele.2018.04.007spa
dcterms.bibliographicCitationHoeg, D. G. and Bencze, J. L. (2017) ‘Values Underpinning STEM Education in the USA: An Analysis of the Next Generation Science Standards’, Science Education, Vol. 101, No. 2, pp. 278–301. https://doi.org/10.1002/sce.21260spa
dcterms.bibliographicCitationICFES (2020) Estructura general del examen Icfes Saber Pro - Portal Icfes, [Online], Available at: https://www.icfes.gov.co/web/guest/acerca-examen-saber-11 [26 Oct 2020].spa
dcterms.bibliographicCitationJohnes, J. (2006) ‘Data envelopment analysis and its application to the measurement of efficiency in higher education’, Economics of Education Review, Vol. 25, No. 3, pp. 273–288. https://doi.org/10.1016/j.econedurev.2005.02.005spa
dcterms.bibliographicCitationKhan, S. U., Khan, Z. and Hameed, G. (2019) ‘Efficiency Assessment of Public Education & Health Sector in Selected Middle-Income Countries with Special Reference to Millennium Development Goals (MDGs)’, Journal of Applied Economics and Business Studies, Vol. 3, No. 1, pp. 41–60. https://doi.org/10.34260/jaebs.313spa
dcterms.bibliographicCitationKlumpp, M. (2018) ‘The Index Number Problem with DEA: Insights from European University Efficiency Data’, Education Sciences, Vol. 8, No. 2, pp. 79. https://doi.org/10.3390/educsci8020079spa
dcterms.bibliographicCitationKolo, K. D., Adepoju Solomon A. and Alhassan, J. K. (2015) ‘A Decision Tree Approach for Predicting Students Academic Performance’, International Journal of Education and Management Engineering, Vol. 5, No. 5, pp. 12-19. https://doi.org/10.5815/ijeme.2015.05.02spa
dcterms.bibliographicCitationKuah, C. T. and Wong, K. Y. (2011) ‘Efficiency assessment of universities through data envelopment analysis’, Procedia Computer Science, Vol. 3, pp. 499–506. https://doi.org/10.1016/j.procs.2010.12.084spa
dcterms.bibliographicCitationGonzález, L., Minguillón, J., Martínez, T. and Meneses, J. (2018) ‘Institutional support to provide freshmen with flexible learning paths at course and semester level in open higher education’, Working Paper UOC.spa
dcterms.bibliographicCitationLong, P. and Siemens, G. (2014) ‘Penetrating the fog: analytics in learning and education’, Italian Journal of Educational Technology, Vol. 22, No. 3, pp. 132–137spa
dcterms.bibliographicCitationMenardi, G. (2011) ‘Density-based Silhouette diagnostics for clustering methods’, Statistics and Computing, Vol. 21, No. 3, pp. 295–308. https://doi.org/10.1007/s11222-010-9169-0spa
dcterms.bibliographicCitationMikušová, P. (2017) ‘Measuring the efficiency of the Czech public higher education institutions: an application of DEA’, Journal on Efficiency and Responsibility in Education and Science, Vol. 10, No. 2, pp. 58–63. https://doi.org/10.7160/eriesj.2017.100204spa
dcterms.bibliographicCitationNajadat, H., Althebyan, Q. and Al-Omary, Y. (2019) ‘Higher Education Units Assessment Based on Data Envelopment Analysis and Clustering Techniques’, In 2019 International Arab Conference on Information Technology (ACIT), pp. 171–177. https://doi.org/10.1109/ACIT47987.2019.8991103spa
dcterms.bibliographicCitationNazir, A. (2019) ‘A critique of imbalanced data learning approaches for big data analytics’, International Journal of Business Intelligence and Data Mining, Vol. 14, No. 4, pp. 419–457. https://doi.org/10.1504/IJBIDM.2019.099961spa
dcterms.bibliographicCitationOyelade, J., Isewon, I., Oladipupo, O., Emebo, O., Omogbadegun, Z., Aromolaran, O., Uwoghiren, E, Olaniyan, D., Olawole, O. (2019) ‘Data Clustering: Algorithms and Its Applications’, In 2019 19th International Conference on Computational Science and Its Applications (ICCSA), pp. 71–81. https://doi.org/10.1109/ICCSA.2019.000-1spa
dcterms.bibliographicCitationPawsey, N., Ananda, J. and Hoque, Z. (2018) ‘Rationality, accounting and benchmarking water businesses: An analysis of measurement challenges’, International Journal of Public Sector Management, Vol. 31, No. 3, pp. 290–315. https://doi.org/10.1108/IJPSM-04-2017-0124spa
dcterms.bibliographicCitationRamzi, S., Afonso, A. and Ayadi, M. (2016) ‘Assessment of efficiency in basic and secondary education in Tunisia: A regional analysis’, International Journal of Educational Development, Vol. 51, pp. 62–76. https://doi.org/10.1016/j.ijedudev.2016.08.003spa
dcterms.bibliographicCitationSharma, J. and Yarlagadda, P. K. (2018) ‘Perspectives of ‘STEM education and policies’ for the development of a skilled workforce in Australia and India’, International Journal of Science Education, Vol. 40, No. 16, pp. 1999–2022. https://doi.org/10.1080/09500693.2018.1517239spa
dcterms.bibliographicCitationSingh, I., Sabitha, A. S. and Bansal, A. (2016) ‘Student performance analysis using clustering algorithm’, In 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence), pp. 294–299. https://doi.org/10.1109/CONFLUENCE.2016.7508131spa
dcterms.bibliographicCitationSinuany‐Stern, Z., Mehrez, A. and Hadad, Y. (2000) ‘An AHP/DEA methodology for ranking decision making units’, International Transactions in Operational Research, Vol. 7, No. 2, pp. 109–124. https://doi.org/10.1111/j.1475-3995.2000.tb00189.xspa
dcterms.bibliographicCitationSun, Q., Liu, H., & Wang, W. (2020). ‘Evaluating the Quality of GANs Based on F1 Harmonic Mean’, Procedia Computer Science, Vol. 166, pp. 463–468. https://doi:10.1016/j.procs.2020.02.064spa
dcterms.bibliographicCitationSuresh, K. M., Asokan, P. and Vinodh, S. (2016) ‘Application of design for Six Sigma methodology to an automotive component’, International Journal of Six Sigma and Competitive Advantage, Vol. 10, No. 1, pp. 1. https://doi.org/10.1504/IJSSCA.2016.080446spa
dcterms.bibliographicCitationSuter, L. E. and Camilli, G. (2019) ‘International Student Achievement Comparisons and US STEM Workforce Development’, Journal of Science Education and Technology, Vol. 28, No. 1, pp. 52–61. https://doi.org/10.1007/s10956-018-9746-0spa
dcterms.bibliographicCitationThanassoulis, E., Dey, P. K., Petridis, K., Goniadis, I. and Georgiou, A. C. (2017) ‘Evaluating higher education teaching performance using combined analytic hierarchy process and data envelopment analysis’, Journal of the Operational Research Society, Vol. 68, No. 4, pp. 431–445. https://doi.org/10.1057/s41274-016-0165-4spa
dcterms.bibliographicCitationTorabi, R., Moradi, P. and Khantaimoori, A. R. (2012) ‘Predict Student Scores Using Bayesian Networks’, Procedia - Social and Behavioral Sciences, Vol. 46, pp. 4476–4480. https://doi.org/10.1016/j.sbspro.2012.06.280spa
dcterms.bibliographicCitationTorres-Samuel, M., Vásquez, C. L., Luna, M., Bucci, N., Viloria, A., Crissien, T. and Manosalva, J. (2020) ‘Performance of Education and Research in Latin American Countries through Data Envelopment Analysis (DEA)’, Procedia Computer Science, Vol. 170, pp. 1023–1028. https://doi.org/10.1016/j.procs.2020.03.079spa
dcterms.bibliographicCitationTran, C.-D. T. T. and Villano, R. A. (2019) ‘Environmentally-adjusted efficiencies of Vietnamese higher education institutions: a multi-stage bootstrap DEA method’, International Journal of Operational Research, Vol. 36, No. 3, pp. 413–439. https://doi.org/10.1504/IJOR.2019.103126spa
dcterms.bibliographicCitationVisbal-Cadavid, D., Martínez-Gómez, M. and Escorcia-Caballero, R. (2020) ‘Exploring University Performance through Multiple Factor Analysis: A Case Study’, Sustainability, Vol. 12, No. 3, 924. https://doi.org/10.3390/su12030924spa
dcterms.bibliographicCitationVisbal-Cadavid, D., Martínez-Gómez, M. and Guijarro, F. (2017) 'Assessing the efficiency of public universities through DEA. A case study', Sustainability, Vol. 9, No. 8, 1416. https://doi.org/10.3390/su9081416spa
dcterms.bibliographicCitationVisbal-Cadavid, D., Mendoza, A. M. and Hoyos, I. Q. (2019) ‘Prediction of efficiency in Colombian Higher Education institutions with Data Envelopment Analysis and Neural Networks’, Pesquisa Operacional, Vol. 39, No. 2, pp. 261–275. https://doi.org/10.1590/0101-7438.2019.039.02.0261spa
dcterms.bibliographicCitationWitte, K. D. and López-Torres, L. (2017) ‘Efficiency in education: a review of literature and a way forward’, Journal of the Operational Research Society, Vol. 68, No. 4, pp. 339–363. https://doi.org/10.1057/jors.2015.92spa
dcterms.bibliographicCitationWolszczak-Derlacz, J. (2017) ‘An evaluation and explanation of (in)efficiency in higher education institutions in Europe and the U.S. with the application of two-stage semi-parametric DEA’, Research Policy, Vol. 46, No. 9, pp. 1595–1605. https://doi.org/10.1016/j.respol.2017.07.010spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.7160/ERIESJ.2021.140104
dc.subject.keywordsEfficiencyspa
dc.subject.keywordsHigher educationspa
dc.subject.keywordsMachine learningspa
dc.subject.keywordsPredictive evaluationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.format.size12 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.