Mostrar el registro sencillo del ítem
Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems
dc.contributor.author | Rodrigues, Fagner B. | |
dc.contributor.author | Muentes Acevedo, Jeovanny | |
dc.date.accessioned | 2021-07-29T19:26:35Z | |
dc.date.available | 2021-07-29T19:26:35Z | |
dc.date.issued | 2020-10-07 | |
dc.date.submitted | 2021-07-29 | |
dc.identifier.citation | Rodrigues, F.B., Acevedo, J.M. Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems. J Dyn Control Syst (2021). https://doi.org/10.1007/s10883-021-09541-6 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10338 | |
dc.description.abstract | In this paper we extend the definitions of mean dimension and metric mean dimension for non-autonomous dynamical systems. We show some properties of this extension and furthermore some applications to the mean dimension and metric mean dimension of single continuous maps. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Springer Science+Business Media, LLC, part of Springer Nature 2021 | spa |
dc.title | Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems | spa |
dcterms.bibliographicCitation | Freitas AC, Freitas JM, Vaienti S. Extreme value laws for non stationary processes generated by sequential and random dynamical systems. Annales de l’Institut Henri Poincaré, probabilités et statistiques; 2017. Institut Henri Poincaré. | spa |
dcterms.bibliographicCitation | Gromov M. Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math Phys Anal Geom 1999;2(4):323–415. | spa |
dcterms.bibliographicCitation | Gutman Y, Tsukamoto M. 2015. Embedding minimal dynamical systems into Hilbert cubes. arXiv:1511.01802. | spa |
dcterms.bibliographicCitation | Katok A, Hasselblatt B, Vol. 54. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press; 1995. | spa |
dcterms.bibliographicCitation | Kawabata T, Dembo A. The rate-distortion dimension of sets and measures. IEEE Trans Inf Theory 1994;40(5):1564–72. | spa |
dcterms.bibliographicCitation | Kloeckner B. Optimal transport and dynamics of expanding circle maps acting on measures. Ergodic Theory Dyn Syst 2013;33(2):529–48. | spa |
dcterms.bibliographicCitation | Kolyada S, Snoha L. Topological entropy of nonautonomous dynamical systems. Random Comput Dyn 1996;4(2):205. | spa |
dcterms.bibliographicCitation | Li H. Sofic mean dimension. Adv Math 2013;244:570–604. | spa |
dcterms.bibliographicCitation | Lindenstrauss E. Mean dimension, small entropy factors and an embedding theorem. Publ Math Inst des Hautes Études Scientifiques 1999;89(1):227–262 | spa |
dcterms.bibliographicCitation | Lindenstrauss E, Weiss B. Mean topological dimension. Israel J Math 2000;115(1):1–24. | spa |
dcterms.bibliographicCitation | Lindenstrauss E, Tsukamoto M. From rate distortion theory to metric mean dimension: variational principle. IEEE Trans Inf Theory 2018;64(5):3590–609. | spa |
dcterms.bibliographicCitation | Lindenstrauss E, Tsukamoto M. Mean dimension and an embedding problem: an example. Israel J Math 2014;199(5–2):573–84. | spa |
dcterms.bibliographicCitation | Misiurewicz M. Horseshoes for continuous mappings of an interval. Dynamical systems. Berlin: Springer; 2010. p. 125–35. | spa |
dcterms.bibliographicCitation | Muentes J. On the continuity of the topological entropy of non-autonomous dynamical systems. Bull Braz Math Soc New Ser 2018;49(1):89–106. | spa |
dcterms.bibliographicCitation | Stadlbauer M. Coupling methods for random topological Markov chains. Ergodic Theory Dyn Syst 2017;37(3):971–94. | spa |
dcterms.bibliographicCitation | Velozo A, Velozo R. 2017. Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv:1707.05762. | spa |
dcterms.bibliographicCitation | Yano K. A remark on the topological entropy of homeomorphisms. Invent Math 1980;59(3):215–220. | spa |
dcterms.bibliographicCitation | Zhu Y, et al. Entropy of nonautonomous dynamical systems. J Korean Math Soc 2012;49(1):165–185. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/restrictedAccess | spa |
dc.identifier.doi | https://doi.org/10.1007/s10883-021-09541-6 | |
dc.subject.keywords | Non-autonomous dynamical systems | spa |
dc.subject.keywords | Mean dimension | spa |
dc.subject.keywords | Metric mean dimension | spa |
dc.subject.keywords | Topological entropy | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.format.size | 27 páginas | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.