Mostrar el registro sencillo del ítem

dc.contributor.authorRodrigues, Fagner B.
dc.contributor.authorMuentes Acevedo, Jeovanny
dc.date.accessioned2021-07-29T19:26:35Z
dc.date.available2021-07-29T19:26:35Z
dc.date.issued2020-10-07
dc.date.submitted2021-07-29
dc.identifier.citationRodrigues, F.B., Acevedo, J.M. Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems. J Dyn Control Syst (2021). https://doi.org/10.1007/s10883-021-09541-6spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10338
dc.description.abstractIn this paper we extend the definitions of mean dimension and metric mean dimension for non-autonomous dynamical systems. We show some properties of this extension and furthermore some applications to the mean dimension and metric mean dimension of single continuous maps.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSpringer Science+Business Media, LLC, part of Springer Nature 2021spa
dc.titleMean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systemsspa
dcterms.bibliographicCitationFreitas AC, Freitas JM, Vaienti S. Extreme value laws for non stationary processes generated by sequential and random dynamical systems. Annales de l’Institut Henri Poincaré, probabilités et statistiques; 2017. Institut Henri Poincaré.spa
dcterms.bibliographicCitationGromov M. Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math Phys Anal Geom 1999;2(4):323–415.spa
dcterms.bibliographicCitationGutman Y, Tsukamoto M. 2015. Embedding minimal dynamical systems into Hilbert cubes. arXiv:1511.01802.spa
dcterms.bibliographicCitationKatok A, Hasselblatt B, Vol. 54. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press; 1995.spa
dcterms.bibliographicCitationKawabata T, Dembo A. The rate-distortion dimension of sets and measures. IEEE Trans Inf Theory 1994;40(5):1564–72.spa
dcterms.bibliographicCitationKloeckner B. Optimal transport and dynamics of expanding circle maps acting on measures. Ergodic Theory Dyn Syst 2013;33(2):529–48.spa
dcterms.bibliographicCitationKolyada S, Snoha L. Topological entropy of nonautonomous dynamical systems. Random Comput Dyn 1996;4(2):205.spa
dcterms.bibliographicCitationLi H. Sofic mean dimension. Adv Math 2013;244:570–604.spa
dcterms.bibliographicCitationLindenstrauss E. Mean dimension, small entropy factors and an embedding theorem. Publ Math Inst des Hautes Études Scientifiques 1999;89(1):227–262spa
dcterms.bibliographicCitationLindenstrauss E, Weiss B. Mean topological dimension. Israel J Math 2000;115(1):1–24.spa
dcterms.bibliographicCitationLindenstrauss E, Tsukamoto M. From rate distortion theory to metric mean dimension: variational principle. IEEE Trans Inf Theory 2018;64(5):3590–609.spa
dcterms.bibliographicCitationLindenstrauss E, Tsukamoto M. Mean dimension and an embedding problem: an example. Israel J Math 2014;199(5–2):573–84.spa
dcterms.bibliographicCitationMisiurewicz M. Horseshoes for continuous mappings of an interval. Dynamical systems. Berlin: Springer; 2010. p. 125–35.spa
dcterms.bibliographicCitationMuentes J. On the continuity of the topological entropy of non-autonomous dynamical systems. Bull Braz Math Soc New Ser 2018;49(1):89–106.spa
dcterms.bibliographicCitationStadlbauer M. Coupling methods for random topological Markov chains. Ergodic Theory Dyn Syst 2017;37(3):971–94.spa
dcterms.bibliographicCitationVelozo A, Velozo R. 2017. Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv:1707.05762.spa
dcterms.bibliographicCitationYano K. A remark on the topological entropy of homeomorphisms. Invent Math 1980;59(3):215–220.spa
dcterms.bibliographicCitationZhu Y, et al. Entropy of nonautonomous dynamical systems. J Korean Math Soc 2012;49(1):165–185.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1007/s10883-021-09541-6
dc.subject.keywordsNon-autonomous dynamical systemsspa
dc.subject.keywordsMean dimensionspa
dc.subject.keywordsMetric mean dimensionspa
dc.subject.keywordsTopological entropyspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.format.size27 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.