Mostrar el registro sencillo del ítem

dc.contributor.authorAcevedo Chedid, Jaime
dc.contributor.authorGrice Reyes, Jennifer
dc.contributor.authorOspina-Mateus, Holman
dc.contributor.authorSalas-Navarro, Katherinne
dc.contributor.authorSantander-Mercado, Alcides
dc.contributor.authorSankar Sana, Shib
dc.coverage.spatialColombia
dc.date.accessioned2021-07-29T18:42:33Z
dc.date.available2021-07-29T18:42:33Z
dc.date.issued2020-03-02
dc.date.submitted2021-07-28
dc.identifier.citationJaime Acevedo-Chedid, Jennifer Grice-Reyes, Holman Ospina-Mateus, Katherinne Salas-Navarro, Alcides Santander-Mercado and Shib Sankar Sana. Soft-computing approaches for rescheduling problems in a manufacturing industry. RAIRO-Oper. Res. 55 (2021) S2125–S2159. https://doi.org/10.1051/ro/2020077spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10331
dc.description.abstractFlexible manufacturing systems as technological and automated structures have a high complexity for scheduling. The decision-making process is made difficult with interruptions that may occur in the system and these problems increase the complexity to define an optimal schedule. The research proposes a three-stage hybrid algorithm that allows the rescheduling of operations in an FMS. The novelty of the research is presented in two approaches: first is the integration of the techniques of Petri nets, discrete simulation, and memetic algorithms and second is the rescheduling environment with machine failures to optimize the makespan and Total Weighted Tardiness. The effectiveness of the proposed Soft computing approaches was validated with the bottleneck of heuristics and the dispatch rules. The results of the proposed algorithm show significant findings with the contrasting techniques. In the first stage (scheduling), improvements are obtained between 50 and 70% on performance indicators. In the second stage (failure), four scenarios are developed that improve the variability, flexibility, and robustness of the schedules. In the final stage (rescheduling), the results show that 78% of the instances have variations of less than 10% for the initial schedule. Furthermore, 88% of the instances support rescheduling with variations of less than 2% compared to the heuristics.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceRAIRO-Oper. Res. 55 (2021) S2125–S2159spa
dc.titleSoft-computing approaches for rescheluding problems in a manufacturing industryspa
dcterms.bibliographicCitation] J. Acevedo and G. Mej´ıa, Programaci´on reactiva y robusta de la producci´on en un ambiente sistema de manufactura flexible: llegada de nuevas ´ordenes y cambios en la prioridad de las ´ordenes de trabajo. Maestria, Departamento de Ingenier´ıa Industrial, Universidad de los Andes (2006).spa
dcterms.bibliographicCitationN. Al-Hinai and T. El-Mekkawy, An efficient hybridized genetic algorithm architecture for the flexible job shop scheduling problem. Flexible Serv. Manuf. J. 23 (2011) 64–85.spa
dcterms.bibliographicCitationO. Ba¸sak and Y.E. Albayrak, Petri net based decision system modeling in real-time scheduling and control of flexible automotive ¨ manufacturing systems. Comput. Ind. Eng. 86 (2015) 116–126spa
dcterms.bibliographicCitationO.T. Baruwa, M.A. Piera and A. Guasch, Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search. IEEE Trans. Syst. Man Cybern. 45 (2014) 831–846.spa
dcterms.bibliographicCitationJ.A. Chedid, K.S. Navarro, H.O. Mateus and A.S. Mercado, Reprogramaci´on de producci´on en cadenas de suministro colaborativas: Una revisi´on de la literatura. Espacio 38 (2017) 23.spa
dcterms.bibliographicCitationF. Chen and J. Chen, Performance modelling and evaluation of dynamic tool allocation in flexible manufacturing systems using coloured Petri nets: an object-oriented approach. Int. J. Adv. Manuf. Technol. 21 (2003) 98–109.spa
dcterms.bibliographicCitationJ. Chen and F.F. Chen, Adaptive scheduling in random flexible manufacturing systems subject to machine breakdowns. Int. J. Prod. Res. 41 (2003) 1927–1951spa
dcterms.bibliographicCitationH. Cho, Petri net models for message manipulation and event monitoring in an FMS cell. Int. J. Prod. Res. 36 (1998) 231–250spa
dcterms.bibliographicCitationC. Cotta, L. Mathieson and P. Moscato, Memetic algorithms. In: Handbook of Heuristics edited by R. Mart´ı, P. M. Pardalos, M. G. C. Resende. Springer, Cham (2018) 607–638.spa
dcterms.bibliographicCitationB.K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. (2020) 1–23. DOI: 10.1080/00207543.2020.1722325spa
dcterms.bibliographicCitationJ. Dorn, R. Kerr and G. Thalhammer, Reactive scheduling: improving the robustness of schedules and restricting the effects of shop floor disturbances by fuzzy reasoning. Int. J. Human-Comput. Stud. 42 (1995) 687–704.spa
dcterms.bibliographicCitationH.A. Elmaraghy and T.Y. Elmekkawy, Deadlock-free rescheduling in flexible manufacturing systems. CIRP Ann. 51 (2002) 371–374.spa
dcterms.bibliographicCitationM.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1 (1976) 117–129spa
dcterms.bibliographicCitationP. Garg, A comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of simplified data encryption standard algorithm. Int. J. Network Secur. App. 1 (2009) 34–42.spa
dcterms.bibliographicCitationA. Gholami, R. Sheikh, N. Mizani and S.S. Sana, ABC analysis of the customers using axiomatic design and incomplete rough set. RAIRO:OR 52 (2018) 1219–1232.spa
dcterms.bibliographicCitationR. Guchhait, B.K. Dey, S. Bhuniya, B. Ganguly, B. Mandal, R.K. Bachar, B. Sarkar, H.M. Wee and K. Chaudhuri, Investment for process quality improvement and setup cost reduction in an imperfect production process with warranty policy and shortages. RAIRO:OR 54 (2020) 251–266spa
dcterms.bibliographicCitationL. Han, K. Xing, X. Chen, H. Lei and F. Wang, Deadlock-free genetic scheduling for flexible manufacturing systems using Petri nets and deadlock controllers. Int. J. Prod. Res. 52 (2014) 1557-1572.spa
dcterms.bibliographicCitationL. Han, K. Xing, X. Chen and F. Xiong, A Petri net-based particle swarm optimization approach for scheduling deadlock-prone flexible manufacturing systems. J. Intel. Manuf. 29 (2018) 1083–1096.spa
dcterms.bibliographicCitation] S.K. Hasan, R. Sarker and D. Essam, Genetic algorithm for job-shop scheduling with machine unavailability and breakdowns. Int. J. Prod. Res. 49 (2011) 4999–5015spa
dcterms.bibliographicCitationI. Hatono, K. Yamagata and H. Tamura, Modeling and online scheduling of flexible manufacturing systems using stochastic Petri nets. IEEE Trans. Softw. Eng. 17 (1991) 126–132.spa
dcterms.bibliographicCitationH. Hoos and T. Stutzle, Stochastic Local Search: Foundations and Applications. Morgan Kaufmann Publishers, San Francisco, CA (2005).spa
dcterms.bibliographicCitationB. Huang, Z. Cai, M. Zhou and J. Hao, Scheduling of FMS based on binary decision diagram and Petri net. In: IEEE 15th International Conference on Networking, Sensing and Control (ICNSC). (2018) 1–6.spa
dcterms.bibliographicCitation] G. Jamali, S.S. Sana and R. Moghdani, Hybrid improved cuckoo search algorithm and genetic algorithm for solving markovmodulated demand. RAIRO:OR 52 (2018) 473–497.spa
dcterms.bibliographicCitationA. Khanna, P. Gautam, B. Sarkar and C.K. Jaggi, Integrated vendor–buyer strategies for imperfect production systems with maintenance and warranty policy. RAIRO:OR 54 (2020) 435–450.spa
dcterms.bibliographicCitation] Y.W. Kim, T. Suzuki and T. Narikiyo, FMS scheduling based on timed Petri Net model and reactive graph search. Appl. Math. Modell. 31 (2007) 955–970.spa
dcterms.bibliographicCitation] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680spa
dcterms.bibliographicCitationR.R. Kumar, A.K. Singh and M. Tiwari, A fuzzy based algorithm to solve the machine-loading problems of a FMS and its neuro fuzzy Petri net model. Int. J. Adv. Manuf. Technol. 23 (2004) 318–341.spa
dcterms.bibliographicCitationB.S. Kumar, G.J. Raju and G.R. Janardhana, Production planning in flexible manufacturing system by considering the multiobjective functions. In: Advances in Materials and Manufacturing Engineering. Lecture Notes in Mechanical Engineering. (ICAMME 2019) Springer, Singapore (2020) 343–352spa
dcterms.bibliographicCitationH. Lei, K. Xing, L. Han and Z. Gao, Hybrid heuristic search approach for deadlock-free scheduling of flexible manufacturing systems using Petri nets. Appl. Soft Comput. 55 (2017) 413–423.spa
dcterms.bibliographicCitationC. Li, W. Wu, Y. Feng and G. Rong, Scheduling FMS problems with heuristic search function and transition-timed Petri nets. J. Intell. Manuf. 26 (2015) 933–944spa
dcterms.bibliographicCitationC. Low and T.H. Wu, Mathematical modelling and heuristic approaches to operation scheduling problems in an FMS environment. Int. Jo. Prod. Res. 39 (2001) 689–708spa
dcterms.bibliographicCitationD.R. Mahapatra, S. Panda and S.S. Sana, Multi-choice and stochastic programming for transportation problem involved in supply of foods and medicines to hospitals with consideration of logistic distribution. RAIRO:OR 54 (2020) 1119–1132.spa
dcterms.bibliographicCitationS.V. Mehta, Predictable scheduling of a single machine subject to breakdowns. Int. J. Comput. Integr. Manuf. 12 (1999) 15–38.spa
dcterms.bibliographicCitationG. Mejia and J. Acevedo, Reactive scheduling in FMS: an integrated approach based on petri nets, genetic algorithms and simulation. In: Third International Conference on Production Research, Americas’ Region (2006)spa
dcterms.bibliographicCitationG. Mej´ıa and K. Ni˜no, A new Hybrid Filtered Beam Search algorithm for deadlock-free scheduling of flexible manufacturing systems using Petri Nets. Comput. Ind. Eng. 108 (2017) 165–176spa
dcterms.bibliographicCitationU. Mishra, J.Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Cleaner Prod. 256 (2020) 120268.spa
dcterms.bibliographicCitationP. Moscato and C. Cotta, Una introducci´on a los algoritmos mem´eticos. Intel. Artif. Rev. Iberoamericana Intel. Artif. 7 (2003) 131–148.spa
dcterms.bibliographicCitation] T. Murata, Petri nets: properties, analysis and applications. Proc. IEEE 77 (1989) 541–580.spa
dcterms.bibliographicCitationH.Z. Nabi and T. Aized, Performance evaluation of a carousel configured multiple products flexible manufacturing system using Petri net. Oper. Manag. Res. 13 (2020) 109–129.spa
dcterms.bibliographicCitationK.S. Navarro, J.A. Chedid, G.M. Arquez, W.F. Florez, H.O. Mateus, S.S. Sana and L.E. C´ardenas-Barr´on, An EPQ inventory model considering an imperfect production system with probabilistic demand and collaborative approach. J. Adv. Manage. Res. 17 (2019) 282–304spa
dcterms.bibliographicCitationK.S. Navarro, J.A. Chedid, W.F. Florez, H.O. Mateus, L.E. C´ardenas-Barr´on and S.S. Sana, A collaborative EPQ inventory model for a three-echelon supply chain with multiple products considering the effect of marketing effort on demand. J. Ind. Manage. Optim. 16 (2020) 1613–1633.spa
dcterms.bibliographicCitationP.S. Pachpor, R. Shrivastava, D. Seth and S. Pokharel, Application of Petri nets towards improved utilization of machines in job shop manufacturing environments. J. Manuf. Technol. Manage. 28 (2017) 169–188.spa
dcterms.bibliographicCitation] A.M. Patel and A.Y. Joshi, Modeling and analysis of a manufacturing system with deadlocks to generate the reachability tree using Petri net system. Proc. Eng. 64 (2013) 775–784.spa
dcterms.bibliographicCitationM. Pinedo, Scheduling. Springer, Cham (2012)spa
dcterms.bibliographicCitationM. Pinedo, Planning and Scheduling in Manufacturing and Services. Springer, New York, NY (2005).spa
dcterms.bibliographicCitationS.S. Sana, H. Ospina-Mateus, F.G. Arrieta and J.A. Chedid, Application of genetic algorithm to job scheduling under ergonomic constraints in manufacturing industry. J. Ambient Intell. Humanized Comput. 10 (2019) 2063–2090.spa
dcterms.bibliographicCitation] S.S. Sankar, S. Ponnanbalam and C. Rajendran, A multiobjective genetic algorithm for scheduling a flexible manufacturing system. Int. J. Adv. Manuf. Technol. 22 (2003) 229–236spa
dcterms.bibliographicCitationS.S. Sankar, S. Ponnambalam and M. Gurumarimuthu, Scheduling flexible manufacturing systems using parallelization of multi-objective evolutionary algorithms. Int. J. Adv. Manuf. Technol. 30 (2006) 279–285.spa
dcterms.bibliographicCitationB. Santosa, R. Damayanti and B. Sarkar, Solving multi-product inventory ship routing with a heterogeneous fleet model using a hybrid cross entropy-genetic algorithm: a case study in Indonesia Prod. Manuf. Res. 4 (2016) 90–113spa
dcterms.bibliographicCitationN. Saxena, B. Sarkar and S. Singh, Selection of remanufacturing/production cycles with an alternative market: a perspective on waste management. J. Cleaner Prod. 245 (2020) 118935.spa
dcterms.bibliographicCitationB.K. Sett, S. Sarkar and B. Sarkar, Optimal buffer inventory and inspection errors in an imperfect production system with preventive maintenance. Int. J. Adv. Manuf. Technol. 90 (2017) 545–560.spa
dcterms.bibliographicCitation] M. Souier, M. Dahane and F. Maliki, An NSGA-II-based multiobjective approach for real-time routing selection in a flexible manufacturing system under uncertainty and reliability constraints. Int. J. Adv. Manuf. Technol. 100 (2019) 2813–2829spa
dcterms.bibliographicCitationA.A. Taleizadeh, L.E. C´ardenas-Barr´on and B. Mohammadi, A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process. Int. J. Prod. Econ. 150 (2014) 9–27spa
dcterms.bibliographicCitationY. Tanimizu, T. Sakaguchi, K. Iwamura and N. Sugimura, Evolutional reactive scheduling for agile manufacturing systems. Int. J. Prod. Res. 44 (2006) 3727–3742spa
dcterms.bibliographicCitationE.S. Tashnizi, S. Farahani and A.F. Nahrekhalaji, Production process optimization in flexible manufacturing system using Petri nets. In: Proceedings of the World Congress on Engineering and Computer Science (2008) 22–24.spa
dcterms.bibliographicCitation] M. Tayyab, J. Jemai, H. Lim and B. Sarkar, A sustainable development framework for a cleaner multi-item multi-stage textile production system with a process improvement initiative. J. Cleaner Prod. 246 (2020) 119055.spa
dcterms.bibliographicCitationS. Tian, T. Wang, L. Zhang and X. Wu, Real-time shop floor scheduling method based on virtual queue adaptive control: algorithm and experimental results. Measurement 147 (2019) 106689.spa
dcterms.bibliographicCitationF. T¨uys¨uz and C. Kahraman, Modeling a flexible manufacturing cell using stochastic Petri nets with fuzzy parameters. Expert Syst. App. 37 (2010) 3910–3920spa
dcterms.bibliographicCitationM. Ullah and B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality. Int. J. Prod. Econ. 219 (2020) 360–374spa
dcterms.bibliographicCitationG.E. Vieira, J.W. Herrmann and E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies, and methods. J. Schedul. 6 (2003) 39–62.spa
dcterms.bibliographicCitation] Z. Zhao, G. Zhang and Z. Bing, Scheduling optimization for FMS based on Petri net modeling and GA. In: IEEE International Conference on Automation and Logistics (ICAL) (2011) 422–427spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1051/ro/2020077
dc.subject.keywordsFlexible manufacturing systemspa
dc.subject.keywordsPetri netspa
dc.subject.keywordsSchedulingspa
dc.subject.keywordsReactive schedulingspa
dc.subject.keywordsMemetics algorithm.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.format.size35 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.