Mostrar el registro sencillo del ítem

dc.contributor.authorArias-Londoño, Andrés
dc.contributor.authorGil-González, Walter
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2021-07-29T18:26:48Z
dc.date.available2021-07-29T18:26:48Z
dc.date.issued2021-05-21
dc.date.submitted2021-07-28
dc.identifier.citationArias-Londoño, A.; Gil-González, W.; Montoya, O.D. A Linearized Approach for the Electric Light Commercial Vehicle Routing Problem Combined with Charging Station Siting and Power Distribution Network Assessment. Appl. Sci. 2021, 11, 4870. https://doi.org/10.3390/app11114870spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10329
dc.description.abstractTransportation electrification has demonstrated a significant position on power utilities and logistic companies, in terms of assets operation and management. Under this context, this paper presents the problem of seeking feasible and good quality routes for electric light commercial vehicles considering battery capacity and charging station siting on the power distribution system. Different transportation patterns for goods delivery are included, such as the capacitated vehicle routing problem and the shortest path problem for the last mile delivery. To solve the problem framed within a mixed integer linear mathematical model, the GAMS software is used and validated on a test instance conformed by a 19-customer transportation network, spatially combined with the IEEE 34 nodes power distribution system. The sensitivity analysis, performed during the computational experiments, show the behavior of the variables involved in the logistics operation, i.e., routing cost for each transport pattern. The trade-off between the battery capacity, the cost of the charging station installation, and energy losses on the power distribution system is also shown, including the energy consumption cost created by the charging operation.spa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.format.extent25 páginas
dc.format.mediumPDF
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceApplied Sciencesspa
dc.titleA linearized approach for the electric light commercial vehicle routing problem combined with charging station siting and power distribution network assessmentspa
dcterms.bibliographicCitationGlobal Energy Review 2019; Technical Report; International Energy Agency: Paris, France, 2019.spa
dcterms.bibliographicCitationWorld Energy Outlook, International Energy Agency; IEA: Paris, France, 2019.spa
dcterms.bibliographicCitationTsakalidis, A.; Krause, J.; Julea, A.; Peduzzi, E.; Pisoni, E.; Thiel, C. Electric light commercial vehicles: Are they the sleeping giant of electromobility? Transp. Res. Part D Transp. Environ. 2020, 86, 102421.spa
dcterms.bibliographicCitationChristensen, L.; Klauenberg, J.; Kveiborg, O.; Rudolph, C. Suitability of commercial transport for a shift to electric mobility with Denmark and Germany as use cases. Res. Transp. Econ. 2017, 64, 48–60.spa
dcterms.bibliographicCitationRaeesi, R.; Zografos, K.G. The electric vehicle routing problem with time windows and synchronised mobile battery swapping. Transp. Res. Part B Methodol. 2020, 140, 101–129.spa
dcterms.bibliographicCitationZhang, S.; Gajpal, Y.; Appadoo, S.; Abdulkader, M. Electric vehicle routing problem with recharging stations for minimizing energy consumption. Int. J. Prod. Econ. 2018, 203, 404–413.spa
dcterms.bibliographicCitationAlame, D.; Azzouz, M.; Kar, N. Assessing and Mitigating Impacts of Electric Vehicle Harmonic Currents on Distribution Systems. Energies 2020, 13, 3257.spa
dcterms.bibliographicCitationLondoño, A.; Granada-Echeverri, M. Optimal placement of freight electric vehicles charging stations and their impact on the power distribution network. Int. J. Ind. Eng. Comput. 2019, 10, 535–556.spa
dcterms.bibliographicCitationArias, A.; Sanchez, J.; Granada, M. Integrated planning of electric vehicles routing and charging stations location considering transportation networks and power distribution systems. Int. J. Ind. Eng. Comput. 2018, 9, 535–550.spa
dcterms.bibliographicCitationErdoğan, S.; Miller-Hooks, E. A green vehicle routing problem. Transp. Res. Part E: Logist. Transp. Rev. 2012, 48, 100–114.spa
dcterms.bibliographicCitationAfroditi, A.; Boile, M.; Theofanis, S.; Sdoukopoulos, E.; Margaritis, D. Electric vehicle routing problem with industry constraints: Trends and insights for future research. Transp. Res. Procedia 2014, 3, 452–459.spa
dcterms.bibliographicCitationMontoya, A.; Guéret, C.; Mendoza, J.E.; Villegas, J.G. A multi-space sampling heuristic for the green vehicle routing problem. Transp. Res. Part C Emerg. Technol. 2016, 70, 113–128.spa
dcterms.bibliographicCitationFelipe, Á.; Ortuño, M.T.; Righini, G.; Tirado, G. A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transp. Res. Part E Logist. Transp. Rev. 2014, 71, 111–128.spa
dcterms.bibliographicCitationMurakami, K.; Morita, H. A Column Generation Model for the Electric and Fuel-Engined Vehicle Routing Problem. In Proceedings of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, Hong Kong, China, 9–12 October 2015; pp. 1986–1991.spa
dcterms.bibliographicCitationBruglieri, M.; Pezzella, F.; Pisacane, O.; Suraci, S. A variable neighborhood search branching for the electric vehicle routing problem with time windows. Electron. Notes Discret. Math. 2015, 47, 221–228.spa
dcterms.bibliographicCitationKeskin, M.; Çatay, B. Partial recharge strategies for the electric vehicle routing problem with time windows. Transp. Res. Part C Emerg. Technol. 2016, 65, 111–127. [spa
dcterms.bibliographicCitationWu, Y.; Yang, M.; Zhang, H.; Chen, K.; Wang, Y. Optimal site selection of electric vehicle charging stations based on a cloud model and the PROMETHEE method. Energies 2016, 9, 157.spa
dcterms.bibliographicCitationZhenfeng, G.; Yang, L.; Xiaodan, J.; Sheng, G. The electric vehicle routing problem with time windows using genetic algorithm. In Proceedings of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 25–26 March 2017; pp. 635–639.spa
dcterms.bibliographicCitationZuo, X.; Zhu, C.; Huang, C.; Xiao, Y. Using AMPL/CPLEX to model and solve the electric vehicle routing problem (EVRP) with heterogeneous mixed fleet. In Proceedings of the 2017 29th Chinese Control In addition, Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 4666–4670.spa
dcterms.bibliographicCitationMontoya, A.; Guéret, C.; Mendoza, J.E.; Villegas, J.G. The electric vehicle routing problem with nonlinear charging function. Transp. Res. Part B Methodol. 2017, 103, 87–110.spa
dcterms.bibliographicCitationDe Cauwer, C.; Verbeke, W.; Coosemans, T.; Faid, S.; Van Mierlo, J. A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies 2017, 10, 608.spa
dcterms.bibliographicCitationWu, Y.; Xie, C.; Xu, C.; Li, F. A decision framework for electric vehicle charging station site selection for residential communities under an intuitionistic fuzzy environment: A case of beijing. Energies 2017, 10, 1270.spa
dcterms.bibliographicCitationMavrovouniotis, M.; Ellinas, G.; Polycarpou, M. Ant colony optimization for the electric vehicle routing problem. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 1234–1241.spa
dcterms.bibliographicCitationYi, Z.; Bauer, P.H. Optimal stochastic eco-routing solutions for electric vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3807–3817.spa
dcterms.bibliographicCitationDeb, S.; Tammi, K.; Kalita, K.; Mahanta, P. Review of recent trends in charging infrastructure planning for electric vehicles. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e306.spa
dcterms.bibliographicCitationMouhrim, N.; Alaoui, A.E.H.; Boukachour, J. Vehicle routing problem with mixed fleet of electric and conventional vehicles under emissions allowances. In Proceedings of the 2018 4th International Conference on Logistics Operations Management (GOL), Le Havre, France, 10–12 April 2018; pp. 1–5.spa
dcterms.bibliographicCitationKeskin, M.; Çatay, B. A matheuristic method for the electric vehicle routing problem with time windows and fast chargers. Comput. Oper. Res. 2018, 100, 172–188.spa
dcterms.bibliographicCitationZhou, B.H.; Tan, F. Electric vehicle handling routing and battery swap station location optimisation for automotive assembly lines. Int. J. Comput. Integr. Manuf. 2018, 31, 978–991.spa
dcterms.bibliographicCitationLu, J.; Wang, L. A Bi-Strategy Based Optimization Algorithm for the Dynamic Capacitated Electric Vehicle Routing Problem. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 646–653.spa
dcterms.bibliographicCitationZhen, L.; Xu, Z.; Ma, C.; Xiao, L. Hybrid electric vehicle routing problem with mode selection. Int. J. Prod. Res. 2020, 58, 562–576.spa
dcterms.bibliographicCitationJie, W.; Yang, J.; Zhang, M.; Huang, Y. The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology. Eur. J. Oper. Res. 2019, 272, 879–904.spa
dcterms.bibliographicCitationBasso, R.; Kulcsár, B.; Egardt, B.; Lindroth, P.; Sanchez-Diaz, I. Energy consumption estimation integrated into the electric vehicle routing problem. Transp. Res. Part D Transp. Environ. 2019, 69, 141–167.spa
dcterms.bibliographicCitationPelletier, S.; Jabali, O.; Laporte, G. The electric vehicle routing problem with energy consumption uncertainty. Transp. Res. Part B Methodol. 2019, 126, 225–255.spa
dcterms.bibliographicCitationZuo, X.; Xiao, Y.; You, M.; Kaku, I.; Xu, Y. A new formulation of the electric vehicle routing problem with time windows considering concave nonlinear charging function. J. Clean. Prod. 2019, 236, 117687.spa
dcterms.bibliographicCitationFroger, A.; Mendoza, J.E.; Jabali, O.; Laporte, G. Improved formulations and algorithmic components for the electric vehicle routing problem with nonlinear charging functions. Comput. Oper. Res. 2019, 104, 256–294.spa
dcterms.bibliographicCitationYi, T.; Cheng, X.B.; Zheng, H.; Liu, J.P. Research on location and capacity optimization method for electric vehicle charging stations considering user’s comprehensive satisfaction. Energies 2019, 12, 1915.spa
dcterms.bibliographicCitationJiang, X.; Guo, X. Evaluation of performance and technological characteristics of battery electric logistics vehicles: China as a case study. Energies 2020, 13, 2455.spa
dcterms.bibliographicCitationGerber Machado, P.; Rodrigues Teixeira, A.C.; Mendes de Almeida Collaço, F.; Hawkes, A.; Mouette, D. Assessment of Greenhouse Gases and Pollutant Emissions in the Road Freight Transport Sector: A Case Study for São Paulo State, Brazil. Energies 2020, 13, 5433.spa
dcterms.bibliographicCitationMao, H.; Shi, J.; Zhou, Y.; Zhang, G. The Electric Vehicle Routing Problem with Time Windows and Multiple Recharging Options. IEEE Access 2020, 8, 114864–114875. [spa
dcterms.bibliographicCitationKancharla, S.R.; Ramadurai, G. Electric vehicle routing problem with nonlinear charging and load-dependent discharging. Expert Syst. Appl. 2020, 160, 113714.spa
dcterms.bibliographicCitationZhang, S.; Chen, M.; Zhang, W.; Zhuang, X. Fuzzy optimization model for electric vehicle routing problem with time windows and recharging stations. Expert Syst. Appl. 2020, 145, 113123.spa
dcterms.bibliographicCitationAlmouhanna, A.; Quintero-Araujo, C.L.; Panadero, J.; Juan, A.A.; Khosravi, B.; Ouelhadj, D. The location routing problem using electric vehicles with constrained distance. Comput. Oper. Res. 2020, 115, 104864.spa
dcterms.bibliographicCitationZhu, X.; Yan, R.; Huang, Z.; Wei, W.; Yang, J.; Kudratova, S. Logistic optimization for multi depots loading capacitated electric vehicle routing problem from low carbon perspective. IEEE Access 2020, 8, 31934–31947.spa
dcterms.bibliographicCitationBahrami, S.; Nourinejad, M.; Amirjamshidi, G.; Roorda, M.J. The Plugin Hybrid Electric Vehicle routing problem: A power-management strategy model. Transp. Res. Part C Emerg. Technol. 2020, 111, 318–333.spa
dcterms.bibliographicCitationBaek, D.; Chen, Y.; Chang, N.; Macii, E.; Poncino, M. Battery-Aware Electric Truck Delivery Route Exploration. Energies 2020, 13, 2096.spa
dcterms.bibliographicCitationToth, P.; Vigo, D. The Vehicle Routing Problem; SIAM: Bologna, Italy, 2002.spa
dcterms.bibliographicCitationYang, J.; Sun, H. Battery swap station location-routing problem with capacitated electric vehicles. Comput. Oper. Res. 2015, 55, 217–232.spa
dcterms.bibliographicCitationHalldórsson, Á.; Wehner, J. Last-mile logistics fulfilment: A framework for energy efficiency. Res. Transp. Bus. Manag. 2020, 37, 100481.spa
dcterms.bibliographicCitationJuan, A.A.; Mendez, C.A.; Faulin, J.; De Armas, J.; Grasman, S.E. Electric vehicles in logistics and transportation: A survey on emerging environmental, strategic, and operational challenges. Energies 2016, 9, 86.spa
dcterms.bibliographicCitationde Andrade, R.C.; Saraiva, R.D. An integer linear programming model for the constrained shortest path tour problem. Electron. Notes Discret. Math. 2018, 69, 141–148.spa
dcterms.bibliographicCitationGarces, A. A linear three-phase load flow for power distribution systems. IEEE Trans. Power Syst. 2015, 31, 827–828.spa
dcterms.bibliographicCitationStevenson, W.; Grainger, J. Power System Analysis; McGraw-Hill Education: Raleigh, NC, USA, 1994.spa
dcterms.bibliographicCitationThe Ybus Admittance Matrix for Solving Power Flow Equations. YouTube Video. 2016. Available online: https:www.youtube.com/watch?v=8jNuSwnL7HE (accessed on 15 January 2021).spa
dcterms.bibliographicCitationQian, K.; Zhou, C.; Allan, M.; Yuan, Y. Effect of load models on assessment of energy losses in distributed generation planning. Int. J. Electr. Power Energy Syst. 2011, 33, 1243–1250.spa
dcterms.bibliographicCitationFlanigan, F.J. Complex Variables: Harmonic and Analytic Functions; Courier Corporation: North Chelmsford, MA, USA, 1983.spa
dcterms.bibliographicCitationGarces, A. A quadratic approximation for the optimal power flow in power distribution systems. Electr. Power Syst. Res. 2016, 130, 222–229.spa
dcterms.bibliographicCitationIEEE PES AMPS DSAS Test Feeder Working Group. 34-bus Feeder. Available online: https://site.ieee.org/pes-testfeeders/resources/ (accessed on 15 October 2020).spa
dcterms.bibliographicCitationNetworking and Emerging Optimization. Capacitated VRP Instances. Available online: https://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/ (accessed on 15 October 2020).spa
dcterms.bibliographicCitationAndres, A.L. Test System for the eLCVRP-CS-PDS. 2021. Available online: https://academia.utp.edu.co/planeamiento/files/2021/02/Pn19k2-IEEE34-elCVRP-CS-PDS.xlsx (accessed on 15 November 2020).spa
dcterms.bibliographicCitationQuebec, H. Electric Vehicle Charging Stations Technical Installation Guide. Hydro Quebéc 2015. Available online: https://www.hydroquebec.com/data/electrification-transport/pdf/technical-guide.pdf (accessed on 30 October 2020).spa
dcterms.bibliographicCitationNicholas, M. Estimating Electric Vehicle Charging Infrastructure Costs across Major US Metropolitan Areas. 2019. Available online: https://theicct.org/publications/charging-cost-US (accessed on 30 October 2020).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.subject.keywordsCharging stationspa
dc.subject.keywordsElectric vehiclespa
dc.subject.keywordsEnergy lossesspa
dc.subject.keywordsLogisticsspa
dc.subject.keywordsMixed integer programming modelspa
dc.subject.keywordsPower distribution systemspa
dc.subject.keywordsRoutingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.