Mostrar el registro sencillo del ítem

dc.contributor.authorPuertas, Edwin
dc.contributor.authorMoreno-Sandoval, Luis Gabriel
dc.contributor.authorRedondo, Javier
dc.contributor.authorAlvarado‑Valencia, Jorge Andres
dc.contributor.authorPomares Quimbaya, Alexandra
dc.coverage.temporalColombia
dc.date.accessioned2021-07-29T18:04:29Z
dc.date.available2021-07-29T18:04:29Z
dc.date.issued2020-03-13
dc.date.submitted2021-07-28
dc.identifier.citationPuertas, E., Moreno-Sandoval, L.G., Redondo, J. et al. Detection of Sociolinguistic Features in Digital Social Networks for the Detection of Communities. Cogn Comput 13, 518–537 (2021). https://doi.org/10.1007/s12559-021-09818-9spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10325
dc.description.abstractThe emergence of digital social networks has transformed society, social groups, and institutions in terms of the communi cation and expression of their opinions. Determining how language variations allow the detection of communities, together with the relevance of specifc vocabulary (proposed by the National Council of Accreditation of Colombia (Consejo Nacional de Acreditación - CNA) to determine the quality evaluation parameters for universities in Colombia) in digital assemblages could lead to a better understanding of their dynamics and social foundations, thus resulting in better communication policies and intervention where necessary. The approach presented in this paper intends to determine what are the semantic spaces (sociolinguistic features) shared by social groups in digital social networks. It includes fve layers based on Design Science Research, which are integrated with Natural Language Processing techniques (NLP), Computational Linguistics (CL), and Artifcial Intelligence (AI). The approach is validated through a case study wherein the semantic values of a series of “Twit ter” institutional accounts belonging to Colombian Universities are analyzed in terms of the 12 quality factors established by CNA. In addition, the topics and the sociolect used by diferent actors in the university communities are also analyzed. The current approach allows determining the sociolinguistic features of social groups in digital social networks. Its application allows detecting the words or concepts to which each actor of a social group (university) gives more importance in terms of vocabularyspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCognitive Computation 13(1):20spa
dc.titleDetection of Sociolinguistic Features in Digital Social Networks for the Detection of Communitiesspa
dcterms.bibliographicCitationDumbill E. A revolution that will transform how we live, work, and think: An interview with the authors of big data. Big data. 2013;1(2):73–7.spa
dcterms.bibliographicCitationMeyerhoff M. Introducing sociolinguistics. Taylor & Francis Group: Routledge; 2015.spa
dcterms.bibliographicCitationMeyerhoff M. Introducing sociolinguistics. Routledge; 2018.spa
dcterms.bibliographicCitationScott J. Social network analysis: developments, advances, and prospects. Social network analysis and mining. 2011;1(1):21–6.spa
dcterms.bibliographicCitationZeinab Kafi, Khalil Motallebzadeh. An introduction to sociolinguistics. International Journal of Society, Culture & Language. 2016;4(2):134–40.spa
dcterms.bibliographicCitationBryden J, Funk S, Jansen VA. Word usage mirrors community structure in the online social network twitter. EPJ Data Science, 2013;2(1):3.spa
dcterms.bibliographicCitationRíos SA, Muñoz R. Dark web portal overlapping community detection based on topic models. In Proceedings of the ACM SIGKDD workshop on intelligence and security informatics. 2012. p. 1–7.spa
dcterms.bibliographicCitationNguyen D. A Seza Doğruöz, Carolyn P Rosé, and Franciska de Jong. Computational sociolinguistics: A survey Computational linguistics. 2016;42(3):537–93.spa
dcterms.bibliographicCitationReynolds WN, Salter WJ, Farber RM, Corley C, Dowling CP, Beeman WO, et al. Sociolect-based community detection. In 2013 IEEE International Conference on Intelligence and Security Informatics. 2013. p. 221–226, IEEE.spa
dcterms.bibliographicCitationMansouri F, Abdelalim S, Ikram EA. A modeling framework for the moroccan sociolect recognition used on the social media. In Proceedings of the 2nd international Conference on Big Data, Cloud and Applications. ACM. 2017. p. 34.spa
dcterms.bibliographicCitationGibson KR. Tool use, language and social behavior in relationship to information processing capacities. Tools, language and cognition in human evolution. 1993. p. 251-269.spa
dcterms.bibliographicCitationK Adnan, R Akbar. An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data. 2019;6(1):91.spa
dcterms.bibliographicCitationLouwerse MM. Semantic variation in idiolect and sociolect: Corpus linguistic evidence from literary texts. Computers and the Humanities. 2004;38(2):207–21.spa
dcterms.bibliographicCitationParadis RD, Davenport D, Menaker D, Taylor SM. Detection of groups in non-structured data. Procedia Computer Science. 2012;12:412–7.spa
dcterms.bibliographicCitationA Hussain, E Cambria. Semi-supervised learning for big social data analysis. Neurocomputing. 2018;275:1662–733.spa
dcterms.bibliographicCitationLi L, Wu L, Evans JA. Social centralization and semantic collapse: Hyperbolic embeddings of networks and text. CoRR, abs/2001.09493, 2020.spa
dcterms.bibliographicCitationBalaanand M, Karthikeyan N, Karthik S, Varatharajan R, Manogaran G, Sivaparthipan C. An enhanced graph-based semi-supervised learning algorithm to detect fake users on twitter. The Journal of Supercomputing. 2019;75(9):6085–105.spa
dcterms.bibliographicCitationCavallari S, Cambria E, Cai H, Chang KC, Zheng VW. Embedding both finite and infinite communities on graphs [application notes]. IEEE Computational Intelligence Magazine. 2019;14(3):39–50.spa
dcterms.bibliographicCitationH Fani, E Jiang, E Bagheri, F Al-Obeidat, W Du, M Kargar. User community detection via embedding of social network structure and temporal content. Information Processing & Management. 2020;57(2):102056.spa
dcterms.bibliographicCitationPark C, Han J, Yu H. Deep multiplex graph infomax: Attentive multiplex network embedding using global information. Knowledge-Based Systems. 2020. p.105861.spa
dcterms.bibliographicCitationLiu P, Zhang L, Gulla JA. Real-time social recommendation based on graph embedding and temporal context. International Journal of Human-Computer Studies. 2019;121:58–72.spa
dcterms.bibliographicCitationTkachenko N, Guo W. Conflict detection in linguistically diverse on-line social networks: A russia-ukraine case study. In Proceedings of the 11th International Conference on Management of Digital EcoSystems, MEDES ’19. Association for Computing Machinery. New York, NY, USA. 2019. p. 23-28.spa
dcterms.bibliographicCitationE Cambria. Affective computing and sentiment analysis. IEEE intelligent systems. 2016;31(2):102–7.spa
dcterms.bibliographicCitationPoria S, Chaturvedi I, Cambria E, Bisio F. Sentic lda: Improving on lda with semantic similarity for aspect-based sentiment analysis. In 2016 international joint conference on neural networks (IJCNN). 2016. p. 4465–4473, IEEE.spa
dcterms.bibliographicCitationHevner A, Chatterjee S. Design research in information systems: theory and practice. Springer Science & Business Media. 2010;2.spa
dcterms.bibliographicCitationGonzález RA, Pomares A. La investigación científica basada en el diseño como eje de proyectos de investigación en ingeniería. Reunión Nacional ACOFI. 2012. p. 12–14.spa
dcterms.bibliographicCitationKietzmann JH, Hermkens K, McCarthy IP, Silvestre BS. Social media? get serious! understanding the functional building blocks of social media. Business horizons. 2011;54(3):241–51.spa
dcterms.bibliographicCitationEspañola RA. Banco de datos (CREA). Corpus de referencia del español actual. 2015. p. 2011–10.spa
dcterms.bibliographicCitationSpitkovsky VI, Alshawi H, Chang AX, Jurafsky D. Unsupervised dependency parsing without gold part-of-speech tags. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. Edinburgh, Scotland, UK. 2011. p. 1281–1290spa
dcterms.bibliographicCitationKhurshid A, Gillam L, Tostevin L. University of surrey participation in trec8: Weirdness indexing for logical document extrapolation and retrieval (wilder). In The Eighth Text REtrieval Conference (TREC-8). Gaithersburg, Maryland. 1999. p. 1–8.spa
dcterms.bibliographicCitationJoseph K, Carley KM, Hong JI. Check-ins in blau space applying blau macrosociological theory to foursquare check-ins from new york city. ACM Transactions on Intelligent Systems and Technology (TIST). 2014;5(3):1–22.spa
dcterms.bibliographicCitationPark Y, Alam MH, Ryu WJ, and Sangkeun Lee. Bl-lda: Bringing bigram to supervised topic model. In 2015 International Conference on Computational Science and Computational Intelligence (CSCI). 2015. p. 83–88, IEEEspa
dcterms.bibliographicCitationCamacho D, Panizo-LLedot A, Bello-Orgaz G, Gonzalez-Pardo A, Cambria E. The four dimensions of social network analysis: An overview of research methods, applications, and software tools. Information Fusion. 2020;63:88–120.spa
dcterms.bibliographicCitationVarelo AR. Hacia un modelo de aseguramiento de la calidad en la educación superior en colombia: estándares básicos y acreditación de excelencia. Educación superior, calidad y acreditación. CNA., 2003.spa
dcterms.bibliographicCitationPark Y, Alam MH, Ryu WJ, and Sangkeun Lee. Bl-lda: Bringing bigram to supervised topic model. In 2015 International Conference on Computational Science and Computational Intelligence (CSCI). 2015. p. 83–88, IEEEspa
dcterms.bibliographicCitationDamani OP, Ghonge S. Appropriately incorporating statistical significance in pmi. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics. 2013. p. 163–169.spa
dcterms.bibliographicCitationArora S, Li Y, Liang Y, Ma T, Risteski A. A latent variable model approach to pmi-based word embeddings. Transactions of the Association for Computational Linguistics. 2016;4:385–99.spa
dcterms.bibliographicCitationAhmad K, Gillman L, Tostevin L. Weirdness indexing for logical document extrapolation and retrieval. In Proceedings of the Eighth Text Retrieval Conference (TREC-8). 2000. p. 1–8.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1007/s12559-021-09818-9
dc.subject.keywordsSociolinguisticspa
dc.subject.keywordsCommunity discoveryspa
dc.subject.keywordsNatural language processingspa
dc.subject.keywordsSocial networksspa
dc.subject.keywordsCommunity detectionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.format.size20 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.