Mostrar el registro sencillo del ítem

dc.contributor.authorMartinez Villadiego, Keydis
dc.contributor.authorArias Tapia, Mary Judith
dc.contributor.authorUseche Vivero, Jairo
dc.contributor.authorEscobar Macías, Daniela
dc.date.accessioned2021-07-29T17:59:15Z
dc.date.available2021-07-29T17:59:15Z
dc.date.issued2021-06-17
dc.date.submitted2021-07-28
dc.identifier.citationMartinez Villadiego, K., Arias Tapia, M.J., Useche, J. et al. Thermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Review. J Polym Environ (2021). https://doi.org/10.1007/s10924-021-02207-1spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10324
dc.description.abstractPolylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicinespa
dc.description.sponsorshipUniversidad Tecnológica de Bolívarspa
dc.format.extent17 páginas
dc.format.mediumPDF
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceJournal of Polymers and the Environment, 2021spa
dc.titleThermoplastic Starch (TPS)/Polylactic Acid (PLA) Blending Methodologies: A Reviewspa
dcterms.bibliographicCitationKaseem M, Hamad K, Deri F (2012) Preparation and studying properties of thermoplastic starch/acrylonitrile–butadiene–styrene blend. Int J Plast Technol 16:39–49. https://doi.org/10.1007/s12588-012-9027-3spa
dcterms.bibliographicCitationAverous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch – polycaprolactone. Polymer 41:4157–4167spa
dcterms.bibliographicCitationChotiprayon P, Chaisawad B, Yoksan R (2020) Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. Int J Biol Macromol 156:960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121spa
dcterms.bibliographicCitationKuo C, Liu L, Teng W, Chang H (2016) Preparation of starch / acrylonitrile-butadiene-styrene copolymers (ABS) biomass alloys and their feasible evaluation for 3D printing applications. Compos Part B 86:36–39. https://doi.org/10.1016/j.compositesb.2015.10.005spa
dcterms.bibliographicCitationOthman SH, Majid NA, Tawakkal ISMA et al (2019) Tapioca starch films reinforced with microcrystalline cellulose for potential food packaging application. Food Sci Technol 39:605–612. https://doi.org/10.1590/fst.36017spa
dcterms.bibliographicCitationWu Z, Huang Y, Xiao L et al (2019) Physical properties and structural characterization of starch/polyvinyl alcohol/graphene oxide composite films. Int J Biol Macromol 123:569–575. https://doi.org/10.1016/j.ijbiomac.2018.11.071spa
dcterms.bibliographicCitationZhu F (2015) Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr Polym 122:456–480spa
dcterms.bibliographicCitationDawam Abdu AH, Pudjirahar S, Karina M et al (2019) Fabrication and Characterization of Sweet Potato Starch-based Bioplastics Plasticized with Glycerol. J Biol Sci 19:57–64. https://doi.org/10.3923/jbs.2019.57.64spa
dcterms.bibliographicCitationTabasum S, Younas M, Zaeem MA et al (2019) A review on blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical modeling. Int J Biol Macromol 122:969–996spa
dcterms.bibliographicCitationJebalia I, Maigret JE, Réguerre AL et al (2019) Morphology and mechanical behaviour of pea-based starch-protein composites obtained by extrusion. Carbohydr Polym 223:115086. https://doi.org/10.1016/j.carbpol.2019.115086spa
dcterms.bibliographicCitationZhu F (2017) Structures, properties, modifications, and uses of oat starch. Food Chem 229:329–340spa
dcterms.bibliographicCitationWang L, Gong Y, Li Y, Tian Y (2020) Structure and properties of soft rice starch. Int J Biol Macromol 157:10–16. https://doi.org/10.1016/j.ijbiomac.2020.04.138spa
dcterms.bibliographicCitationPunia S (2019) Barley starch: Structure, properties and in vitro digestibility - A review. Int J Biol Macromol 155:868–875spa
dcterms.bibliographicCitationWong PY, Lai YH, Puspanadan S et al (2019) Extraction of Starch from Marine Microalgae, Chlorella salina: Efficiency and Recovery. Int J Environ Res 13:283–293. https://doi.org/10.1007/s41742-019-00173-0spa
dcterms.bibliographicCitationDu X, Jia J, Xu S, Zhou Y (2007) Molecular Structure of Starch fromPueraria lobata (Willd.) Ohwi Relative to Kuzu Starch. Starch - Stärke 59:609–613. https://doi.org/10.1002/star.200700604spa
dcterms.bibliographicCitationWu AC, Witt T, Gilbert RG (2013) Characterization methods for starch-based materials: State of the art and perspectives. Aust J Chem 66:1550–1563spa
dcterms.bibliographicCitationCopeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23:1527–1534. https://doi.org/10.1016/j.foodhyd.2008.09.016spa
dcterms.bibliographicCitationSingh N, Singh J, Kaur L et al (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231spa
dcterms.bibliographicCitationHe W, Wei C (2017) Progress in C-type starches from different plant sources. Food Hydrocoll 73:162–175. https://doi.org/10.1016/j.foodhyd.2017.07.003spa
dcterms.bibliographicCitationWang X, Huang L, Zhang C et al (2020) Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydr Polym 240:116292. https://doi.org/10.1016/j.carbpol.2020.116292spa
dcterms.bibliographicCitationNing W, Xingxiang Z, Na H, Jianming F (2010) Effects of water on the properties of thermoplastic starch poly(lactic acid) blend containing citric acid. J Thermoplast Compos Mater 23:19–34. https://doi.org/10.1177/0892705708096549spa
dcterms.bibliographicCitationPeng S, An Y, Chen C et al (2003) Thermal degradation kinetics of uncapped and end-capped poly(propylene carbonate). Polym Degrad Stab 80:141–147. https://doi.org/10.1016/S0141-3910(02)00395-6spa
dcterms.bibliographicCitationAverous L, Boquillon N (2004) Biocomposites based on plasticized starch: Thermal and mechanical behaviours. Carbohydr Polym 56:111–122. https://doi.org/10.1016/j.carbpol.2003.11.015spa
dcterms.bibliographicCitationMa X, Yu J, Kennedy JF (2005) Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydr Polym 62:19–24. https://doi.org/10.1016/j.carbpol.2005.07.015spa
dcterms.bibliographicCitationFerri JM, Garcia-Garcia D, Carbonell-Verdu A et al (2018) Poly(lactic acid) formulations with improved toughness by physical blending with thermoplastic starch. J Appl Polym Sci 135:45751. https://doi.org/10.1002/app.45751spa
dcterms.bibliographicCitationGarlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435spa
dcterms.bibliographicCitationMartin O, Avérous L (2001) Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219. https://doi.org/10.1016/S0032-3861(01)00086-6spa
dcterms.bibliographicCitationWang N, Yu J, Chang PR, Ma X (2007) Influence of Citric Acid on the Properties of Glycerol-plasticized dry Starch (DTPS) and DTPS/Poly(lactic acid) Blends. Starch - Stärke 59:409–417. https://doi.org/10.1002/star.200700617spa
dcterms.bibliographicCitationAvérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci 44:231–274spa
dcterms.bibliographicCitationSoest JJG Van, Borger DB (1997) Structure and properties of compression-molded thermoplastic starch materials from normal and high‐amylose maize starches. J Appl Polym Sci 64:631–644.spa
dcterms.bibliographicCitationNansu W, Ross S, Ross G, Mahasaranon S (2019) Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Mater Today Proc 17:2010–2019. https://doi.org/10.1016/j.matpr.2019.06.249spa
dcterms.bibliographicCitationMendes JF, Paschoalin RT, Carmona VB et al (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458. https://doi.org/10.1016/j.carbpol.2015.10.093spa
dcterms.bibliographicCitationMościcki L, Mitrus M, Wójtowicz A et al (2012) Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res Int 47:291–299. https://doi.org/10.1016/j.foodres.2011.07.017spa
dcterms.bibliographicCitationJiugao Y, Ning W (2005) The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Strake 57:494–504. https://doi.org/10.1002/star.200500423spa
dcterms.bibliographicCitationLiu H, Xie F, Yu L et al (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368. https://doi.org/10.1016/j.progpolymsci.2009.07.001spa
dcterms.bibliographicCitationNofar M, Sacligil D, Carreau PJ et al (2019) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360spa
dcterms.bibliographicCitationDecaen P, Rolland-Sabaté A, Colomines G et al (2020) Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydr Polym 230:115591. https://doi.org/10.1016/j.carbpol.2019.115591spa
dcterms.bibliographicCitationRosa DS, Bardi MAG, MacHado LDB et al (2010) Starch plasticized with glycerol from biodiesel and polypropylene blends: Mechanical and thermal properties. J Therm Anal Calorim 102:181–186. https://doi.org/10.1007/s10973-010-0828-3spa
dcterms.bibliographicCitationDa Róz AL, Carvalho AJF, Gandini A, Curvelo AAS (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr Polym 63:417–424. https://doi.org/10.1016/j.carbpol.2005.09.017spa
dcterms.bibliographicCitationZhang Y, Rempel C, McLaren D (2013) Thermoplastic starch. Elsevier, New Yorkspa
dcterms.bibliographicCitationOtegbayo B, Oguniyan D, Akinwumi O (2014) Physicochemical and functional characterization of yam starch for potential industrial applications. Starch/Staerke 66:235–250. https://doi.org/10.1002/star.201300056spa
dcterms.bibliographicCitationMoghaddam MRA, Razavi SMA, Jahani Y (2018) Effects of compatibilizer and thermoplastic starch (TPS) concentration on morphological, rheological, tensile, thermal and moisture sorption properties of plasticized polylactic acid/TPS blends. J Polym Environ 26:3202–3215. https://doi.org/10.1007/s10924-018-1206-7spa
dcterms.bibliographicCitationDos Santos BH, De Souza Do Prado K, Jacinto AA, Da Silva Spinacé MA (2018) Influence of sugarcane bagasse fiber size on biodegradable composites of thermoplastic starch. J Renew Mater 6:176–182. https://doi.org/10.7569/JRM.2018.634101spa
dcterms.bibliographicCitationZhang Y, Yuan X, Liu Q, Hrymak A (2012) The effect of polymeric chain extenders on physical properties of thermoplastic starch and polylactic acid blends. J Polym Environ 20:315–325. https://doi.org/10.1007/s10924-011-0368-3spa
dcterms.bibliographicCitationIannace S, Sorrentino L, Di Maio E (2014) Biodegradable biomedical foam scaffolds. Biomedical foams for tissue engineering applications. Elsevier, New York, pp 163–187spa
dcterms.bibliographicCitationHottle TA, Bilec MM, Landis AE (2013) Sustainability assessments of bio-based polymers. Polym Degrad Stab 98:1898–1907spa
dcterms.bibliographicCitationCastro-Aguirre E, Iñiguez-Franco F, Samsudin H et al (2016) Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Adv Drug Deliv Rev 107:333–366spa
dcterms.bibliographicCitationKaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: A review of recent works. Polym Sci - Ser A 54:165–176. https://doi.org/10.1134/S0965545X1202006Xspa
dcterms.bibliographicCitationAbdal-Hay A, Sheikh FA, Lim JK (2013) Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Colloids Surfaces B Biointerfaces 102:635–643. https://doi.org/10.1016/j.colsurfb.2012.09.017spa
dcterms.bibliographicCitationPlackett D, VÁzquez A, (2004) Natural polymer sources. Green composites: polymer composites and the environment. Elsevier, New York, pp 123–153spa
dcterms.bibliographicCitationLoureiro NC, Esteves JL (2018) Green composites in automotive interior parts: a solution using cellulosic fibers. Green composites for automotive applications. Elsevier, New York, pp 81–97spa
dcterms.bibliographicCitationMadhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501. https://doi.org/10.1016/j.biortech.2010.05.092spa
dcterms.bibliographicCitationKoh JJ, Zhang X, He C (2018) Fully biodegradable Poly(lactic acid)/Starch blends: A review of toughening strategies. Int J Biol Macromol 109:99–113. https://doi.org/10.1016/j.ijbiomac.2017.12.048spa
dcterms.bibliographicCitationTyler B, Gullotti D, Mangraviti A et al (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175. https://doi.org/10.1016/j.addr.2016.06.018spa
dcterms.bibliographicCitationHamad K, Kaseem M, Ayyoob M et al (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001spa
dcterms.bibliographicCitationAuras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864spa
dcterms.bibliographicCitationHuda MS, Drzal LT, Mohanty AK, Misra M (2007) The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly (lactic acid)/ newspaper fibers / talc hybrid composites. Compos Part B 38:367–379. https://doi.org/10.1016/j.compositesb.2006.06.010spa
dcterms.bibliographicCitationYussuf AA, Massoumi I, Hassan A (2010) Comparison of polylactic Acid/Kenaf and polylactic Acid/Rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. J Polym Environ 18:422–429. https://doi.org/10.1007/s10924-010-0185-0spa
dcterms.bibliographicCitationYu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602spa
dcterms.bibliographicCitationFerri JM, Garcia-Garcia D, Sánchez-Nacher L et al (2016) The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr Polym 147:60–68. https://doi.org/10.1016/j.carbpol.2016.03.082spa
dcterms.bibliographicCitationMüller P, Bere J, Fekete E et al (2016) Interactions, structure and properties in PLA/plasticized starch blends. Polymer 103:9–18. https://doi.org/10.1016/j.polymer.2016.09.031spa
dcterms.bibliographicCitationCarmona VB, De Campos A, Marconcini JM, Mattoso LHC (2014) Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Therm Anal Calorim 115:153–160. https://doi.org/10.1007/s10973-013-3259-0spa
dcterms.bibliographicCitationFlorez JP, Fazeli M, Simão RA (2019) Preparation and characterization of thermoplastic starch composite reinforced by plasma-treated poly (hydroxybutyrate) PHB. Int J Biol Macromol 123:609–621. https://doi.org/10.1016/j.ijbiomac.2018.11.070spa
dcterms.bibliographicCitationJian J, Xiangbin Z, Xianbo H (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Adv Ind Eng Polym Res 3:19–26. https://doi.org/10.1016/j.aiepr.2020.01.001spa
dcterms.bibliographicCitationZeng JB, Jiao L, Li YD et al (2011) Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr Polym 83:762–768. https://doi.org/10.1016/j.carbpol.2010.08.051spa
dcterms.bibliographicCitationPark JW, Im SS, Kim SH, Kim YH (2000) Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch. Polym Eng Sci 40:2539–2550. https://doi.org/10.1002/pen.11384spa
dcterms.bibliographicCitationKe T, Sun X (2001) Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J Appl Polym Sci 81:3069–3082. https://doi.org/10.1002/app.1758spa
dcterms.bibliographicCitationKe T, Sun SX, Seib P (2003) Blending of poly(lactic acid) and starches containing varying amylose content. J Appl Polym Sci 89:3639–3646. https://doi.org/10.1002/app.12617spa
dcterms.bibliographicCitationShin BY, Jo GS, Kang KS et al (2007) Morphology and rheology on the blends of PLA/CMPS. Macromol Res 15:291–301. https://doi.org/10.1007/BF03218790spa
dcterms.bibliographicCitationWang N, Yu J, Chang PR, Ma X (2008) Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydr Polym 71:109–118. https://doi.org/10.1016/j.carbpol.2007.05.025spa
dcterms.bibliographicCitationWang N, Yu J, Ma X (2008) Preparation and characterization of compatible thermoplastic dry starch/poly(lactic acid). Polym Compos 29:551–559. https://doi.org/10.1002/pc.20399spa
dcterms.bibliographicCitationLi H, Huneault MA (2011) Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J Appl Polym Sci 119:2439–2448. https://doi.org/10.1002/app.32956spa
dcterms.bibliographicCitationShirai MA, Müller CMO, Grossmann MVE, Yamashita F (2015) Adipate and Citrate Esters as Plasticizers for Poly(Lactic Acid)/Thermoplastic Starch Sheets. J Polym Environ 23:54–61. https://doi.org/10.1007/s10924-014-0680-9spa
dcterms.bibliographicCitationFerrarezi MMF, de Oliveira Taipina M, da Silva LCE, Gonçalves, M do C (2013) Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends. J Polym Environ 21:151–159. https://doi.org/10.1007/s10924-012-0480-zspa
dcterms.bibliographicCitationAverous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: Starch-polycaprolactone. Polymer 41:4157–4167. https://doi.org/10.1016/S0032-3861(99)00636-9spa
dcterms.bibliographicCitationDebiagi F, Mello LRPF, Mali S (2017) Thermoplastic starch-based blends: processing, structural, and final properties. Starch-based materials in food packaging: processing. Characterization and Applications. Elsevier, New York, pp 153–186spa
dcterms.bibliographicCitationHuneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280. https://doi.org/10.1016/j.polymer.2006.11.023spa
dcterms.bibliographicCitationAkrami M, Ghasemi I, Azizi H et al (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035spa
dcterms.bibliographicCitationWu C-S (2005) Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid - Characterization and Biodegradability Assessment. Macromol Biosci 5:352–361. https://doi.org/10.1002/mabi.200400159spa
dcterms.bibliographicCitationSchwach E, Six JL, Avérous L (2008) Biodegradable blends based on starch and poly(lactic acid): Comparison of different strategies and estimate of compatibilization. J Polym Environ 16:286–297. https://doi.org/10.1007/s10924-008-0107-6spa
dcterms.bibliographicCitationLiu J, Jiang H, Chen L (2012) Grafting of Glycidyl Methacrylate onto Poly(lactide) and Properties of PLA/Starch Blends Compatibilized by the Grafted Copolymer. J Polym Environ 20:810–816. https://doi.org/10.1007/s10924-012-0438-1spa
dcterms.bibliographicCitationShi Q, Chen C, Gao L et al (2011) Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE. Polym Degrad Stab 96:175–182. https://doi.org/10.1016/j.polymdegradstab.2010.10.002spa
dcterms.bibliographicCitationYang X, Finne-Wistrand A, Hakkarainen M (2013) Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites. Compos Sci Technol 86:149–156. https://doi.org/10.1016/j.compscitech.2013.07.013spa
dcterms.bibliographicCitationCuevas-Carballo ZB, Duarte-Aranda S, Canché-Escamilla G (2019) Properties and Biodegradation of Thermoplastic Starch Obtained from Grafted Starches with Poly(lactic acid). J Polym Environ 27:2607–2617. https://doi.org/10.1007/s10924-019-01540-wspa
dcterms.bibliographicCitationNoivoil N, Yoksan R (2020) Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend. Int J Biol Macromol 160:506–517. https://doi.org/10.1016/j.ijbiomac.2020.05.178spa
dcterms.bibliographicCitationKaragoz S, Ozkoc G (2013) Effects of a diisocyanate compatibilizer on the properties of citric acid modified thermoplastic starch/poly(lactic acid) blends. Polym Eng Sci 53:23478. https://doi.org/10.1002/pen.23478spa
dcterms.bibliographicCitationKe T, Sun XS (2003) Thermal and mechanical properties of poly(lactic acid)/starch/methylenediphenyl diisocyanate blending with triethyl citrate. J Appl Polym Sci 88:2947–2955. https://doi.org/10.1002/app.12112spa
dcterms.bibliographicCitationSarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609. https://doi.org/10.1016/j.polymer.2007.11.029spa
dcterms.bibliographicCitationCarmona VB, Corrêa AC, Marconcini JM, Mattoso LHC (2015) Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). J Polym Environ 23:83–89. https://doi.org/10.1007/s10924-014-0666-7spa
dcterms.bibliographicCitationBulatović VO, Mandić V, Kučić Grgić D, Ivančić A (2021) Biodegradable Polymer Blends Based on Thermoplastic Starch. J Polym Environ 29:492–508. https://doi.org/10.1007/s10924-020-01874-wspa
dcterms.bibliographicCitationRen J, Fu H, Ren T, Yuan W (2009) Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydr Polym 77:576–582. https://doi.org/10.1016/j.carbpol.2009.01.024spa
dcterms.bibliographicCitationMa P, Hristova-Bogaerds DG, Schmit P et al (2012) Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene)- co -(vinyl acetate)/starch blends via reactive compatibilization. Polym Int 61:1284–1293. https://doi.org/10.1002/pi.4204spa
dcterms.bibliographicCitationYang Y, Tang Z, Xiong Z, Zhu J (2015) Preparation and characterization of thermoplastic starches and their blends with poly(lactic acid). Int J Biol Macromol 77:273–279. https://doi.org/10.1016/j.ijbiomac.2015.03.053spa
dcterms.bibliographicCitationNoivoil N, Yoksan R (2021) Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch. J Appl Polym Sci 138:49675. https://doi.org/10.1002/app.49675spa
dcterms.bibliographicCitationPrzybytek A, Sienkiewicz M, Kucińska-Lipka J, Janik H (2018) Preparation and characterization of biodegradable and compostable PLA/TPS/ESO compositions. Ind Crops Prod 122:375–383. https://doi.org/10.1016/j.indcrop.2018.06.016spa
dcterms.bibliographicCitationXiong Z, Yang Y, Feng J et al (2013) Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydr Polym 92:810–816. https://doi.org/10.1016/j.carbpol.2012.09.007spa
dcterms.bibliographicCitationTurco R, Ortega-Toro R, Tesser R et al (2019) Poly (Lactic Acid)/Thermoplastic Starch Films: Effect of Cardoon Seed Epoxidized Oil on Their Chemicophysical, Mechanical, and Barrier Properties. Coatings 9:574. https://doi.org/10.3390/coatings9090574spa
dcterms.bibliographicCitationWang N, Yu J, Chang PR, Ma X (2007) Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/poly(lactic acid) blends. Starch/Staerke 59:409–417. https://doi.org/10.1002/star.200700617spa
dcterms.bibliographicCitationYokesahachart C, Yoksan R (2011) Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydr Polym 83:22–31. https://doi.org/10.1016/j.carbpol.2010.07.020spa
dcterms.bibliographicCitationTeixeira E, de M, Curvelo, Corrêa AAS AC, et al (2012) Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind Crops Prod 37:61–68. https://doi.org/10.1016/j.indcrop.2011.11.036spa
dcterms.bibliographicCitationChand N, Fahim M (2021) Natural fibers and their composites. In: Tribology of natural fiber polymer composites. Elsevier, pp 1–59spa
dcterms.bibliographicCitationSalit MS (2014) Tropical Natural Fibre Composites. Springer Singapore, Singaporespa
dcterms.bibliographicCitationBocz K, Szolnoki B, Marosi A et al (2013) Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2013.10.025spa
dcterms.bibliographicCitationSmitthipong W, Tantatherdtam R, Chollakup R (2015) Effect of pineapple leaf fiber-reinforced thermoplastic starch/poly(lactic acid) green composite. J Thermoplast Compos Mater 28:717–729. https://doi.org/10.1177/0892705713489701spa
dcterms.bibliographicCitationIovino R, Zullo R, Rao MA et al (2008) Biodegradation of poly(lactic acid)/starch/coir biocomposites under controlled composting conditions. Polym Degrad Stab 93:147–157. https://doi.org/10.1016/j.polymdegradstab.2007.10.011spa
dcterms.bibliographicCitationSurin P, Rakkwamsuk P, Wimolmala E, Sombatsompop N (2015) Effects of Coir Fiber and Maleic Anhydride Modification on the Properties of Thermoplastic Starch/PLA Composite Laminates. J Nat Fibers 12:108–120. https://doi.org/10.1080/15440478.2014.901203spa
dcterms.bibliographicCitationDe Macedo JRN, Dos Santos Rosa D (2016) Effect of fiber and starch incorporation in biodegradation of PLA-TPS Cotton composites. Key Eng Mater 668:54–62. https://doi.org/10.4028/www.scientific.net/KEM.668.54spa
dcterms.bibliographicCitationKale NR, Raj A A, et al (2018) Mechanical and thermal properties of wood fibers reinforced poly(lactic acid)/thermoplasticized starch composites. J Appl Polym Sci 135:46118. https://doi.org/10.1002/app.46118spa
dcterms.bibliographicCitationCollazo-Bigliardi S, Ortega-Toro R, Chiralt A (2019) Using lignocellulosic fractions of coffee husk to improve properties of compatibilised starch-PLA blend films. Food Packag Shelf Life 22:100423. https://doi.org/10.1016/j.fpsl.2019.100423spa
dcterms.bibliographicCitationJullanun P, Yoksan R (2020) Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polym Test 88:. https://doi.org/10.1016/j.polymertesting.2020.106522spa
dcterms.bibliographicCitationYu L, Liu X, Petinakis E et al (2013) Starch based blends, composites and nanocomposites. Adv Struct Mater 18:121–154. https://doi.org/10.1007/978-3-642-20940-6_4spa
dcterms.bibliographicCitationLiao H-T, Wu C-S (2008) New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl Polym Sci 108:2280–2289. https://doi.org/10.1002/app.27901spa
dcterms.bibliographicCitationArroyo OH, Huneault MA, Favis BD, Bureau MN (2010) Processing and properties of PLA/thermoplastic starch/montmorillonite nanocomposites. Polym Compos 31:114–127. https://doi.org/10.1002/pc.20774spa
dcterms.bibliographicCitationAyana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439. https://doi.org/10.1016/j.carbpol.2014.04.024spa
dcterms.bibliographicCitationFerreira WH, Carmo MMIB, Silva ALN, Andrade CT (2015) Effect of structure and viscosity of the components on some properties of starch-rich hybrid blends. Carbohydr Polym 117:988–995. https://doi.org/10.1016/j.carbpol.2014.10.018spa
dcterms.bibliographicCitationShayan M, Azizi H, Ghasemi I, Karrabi M (2015) Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid. Carbohydr Polym 124:237–244. https://doi.org/10.1016/j.carbpol.2015.02.001spa
dcterms.bibliographicCitationShayan M, Azizi H, Ghasemi I, Karrabi M (2019) Influence of modified starch and nanoclay particles on crystallization and thermal degradation properties of cross-linked poly(lactic acid). J Polym Res 26:1–12. https://doi.org/10.1007/s10965-019-1879-1spa
dcterms.bibliographicCitationPaglicawan MA, Basilia BA, Navarro MTV, Emolaga CS (2013) Influence of nanoclay on the properties of thermoplastic starch/poly(lactic acid) blends. J Biobased Mater Bioenergy 7:102–107. https://doi.org/10.1166/jbmb.2013.1276spa
dcterms.bibliographicCitationEbrahimi H, Najafi FSA, Shahabadi SIS, Garmabi H (2016) A response surface study on microstructure and mechanical properties of poly(lactic acid)/thermoplastic starch/nanoclay nanocomposites. J Compos Mater 50:269–278. https://doi.org/10.1177/0021998315573560spa
dcterms.bibliographicCitationJeziorska R, Szadkowska A, Spasowka E et al (2018) Characteristics of biodegradable polylactide/thermoplastic starch/nanosilica composites: effects of plasticizer and nanosilica functionality. Adv Mater Sci Eng 2018. https://doi.org/10.1155/2018/4571368spa
dcterms.bibliographicCitationSolati M, Saeidi A, Ghasemi I (2019) The effect of graphene nanoplatelets on dynamic properties, crystallization, and morphology of a biodegradable blend of poly(lactic acid)/thermoplastic starch. Iran Polym J (English Ed 28:649–658. https://doi.org/10.1007/s13726-019-00731-5spa
dcterms.bibliographicCitationNazrin A, Sapuan SM, Zuhri MYM (2020) Mechanical, physical and thermal properties of sugar palm nanocellulose reinforced thermoplastic starch (TPS)/Poly (lactic acid) (PLA) blend bionanocomposites. Polymers (Basel) 12:2216. https://doi.org/10.3390/polym12102216spa
dcterms.bibliographicCitationOthman MH (2020) Polymer blends and composites from renewable resources. In: Encyclopedia of renewable and sustainable materials. Elsevier, pp 179–186spa
dcterms.bibliographicCitationCastillo C, Nesic A, Urra N, Maldonado A (2019) Influence of thermoplasticized starch on physical-chemical properties of new biodegradable carriers intended for forest industry. Int J Biol Macromol 122:924–929. https://doi.org/10.1016/j.ijbiomac.2018.11.026spa
dcterms.bibliographicCitationRydz J, Sikorska W, Musioł M et al (2020) Sustainable future alternative: (Bio)degradable polymers for the environment. In: Choudhury I, Hashmi S (eds) Encyclopedia of renewable and sustainable materials. Elsevier, New York, pp 274–284spa
dcterms.bibliographicCitationDorigato A (2021) Recycling of polymer blends. Adv Ind Eng Polym Res 4:53–69. https://doi.org/10.1016/j.aiepr.2021.02.005spa
dcterms.bibliographicCitationShanmugam V, Mensah RA, Försth M et al (2021) Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos Part C Open Access 5:100138. https://doi.org/10.1016/j.jcomc.2021.100138spa
dcterms.bibliographicCitationGürler N, Paşa S, Hakkı Alma M, Temel H (2020) The fabrication of bilayer polylactic acid films from cross-linked starch as eco-friendly biodegradable materials: synthesis, characterization, mechanical and physical properties. Eur Polym J 127:109588. https://doi.org/10.1016/j.eurpolymj.2020.109588spa
dcterms.bibliographicCitationClasen SH, Müller CMO, Pires ATN (2015) Maleic anhydride as a compatibilizer and plasticizer in TPS/PLA blends. J Braz Chem Soc 26:1583–1590. https://doi.org/10.5935/0103-5053.20150126spa
dcterms.bibliographicCitationPalai B, Biswal M, Mohanty S, Nayak SK (2019) In situ reactive compatibilization of polylactic acid (PLA) and thermoplastic starch (TPS) blends; synthesis and evaluation of extrusion blown films thereof. Ind Crops Prod 141:111748. https://doi.org/10.1016/j.indcrop.2019.111748spa
dcterms.bibliographicCitationWootthikanokkhan J, Kasemwananimit P, Sombatsompop N et al (2012) Preparation of modified starch-grafted poly(lactic acid) and a study on compatibilizing efficacy of the copolymers in poly(lactic acid)/thermoplastic starch blends. J Appl Polym Sci 126:E389–E396. https://doi.org/10.1002/app.36896spa
dcterms.bibliographicCitationImre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. In: European Polymer Journal. Pergamon, pp 1215–1233spa
dcterms.bibliographicCitationGómez-Contreras P, Contreras-Camacho M, Avalos-Belmontes F et al (2021) Physicochemical properties of composite materials based on thermoplastic yam starch and polylactic acid improved with the addition of epoxidized sesame oil. J Polym Environ. https://doi.org/10.1007/s10924-021-02119-0spa
dcterms.bibliographicCitationOrtega-Toro R, López-Córdoba A, Avalos-Belmontes F (2021) Epoxidised sesame oil as a biobased coupling agent and plasticiser in polylactic acid/thermoplastic yam starch blends. Heliyon 7:e06176. https://doi.org/10.1016/j.heliyon.2021.e06176spa
dcterms.bibliographicCitationNasseri R, Ngunjiri R, Moresoli C et al (2020) Poly(lactic acid)/acetylated starch blends: effect of starch acetylation on the material properties. Carbohydr Polym 229:115453. https://doi.org/10.1016/j.carbpol.2019.115453spa
dcterms.bibliographicCitationRamanjaneyulu B, Venkatachalapathi N, Prasanthi G (2019) Testing and characterization of binary and ternary blends with poly (lactic acid), acrylonitrile-butadiene-styrene and tapioca cassava starch powder. In: Materials Today: Proceedings. Elsevier Ltd, pp 2183–2186spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1007/s10924-021-02207-1
dc.subject.keywordsBiodegradable polymersspa
dc.subject.keywordsPolylactic acidspa
dc.subject.keywordsPolymer blendsspa
dc.subject.keywordsThermoplastic starchspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Mecánicaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.