Mostrar el registro sencillo del ítem

dc.contributor.authorRodriguez-Cabal, M. A.
dc.contributor.authorBetancur-Gómez, J. D.
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorHincapie, Diego
dc.date.accessioned2021-02-17T21:16:13Z
dc.date.available2021-02-17T21:16:13Z
dc.date.issued2021-01-02
dc.date.submitted2021-02-17
dc.identifier.citationRodriguez-Cabal, M.A., Betancur-Gómez, J.D., Grisales-Noreña, L.F. et al. Optimal Design of Transmission Shafts Using a Vortex Search Algorithm. Arab J Sci Eng (2021). https://doi.org/10.1007/s13369-020-05121-1spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10044
dc.description.abstractThis paper analyzes the problem of optimally sizing a transmission shaft via the vortex search algorithm (VSA) optimizer. The objective function was to minimize the shaft weight through an adequate selection of the diameters of each section of the device, and the constraints were the physical conditions that should be met to design safe, fatigue-proof shafts. The solution and the mathematical model were validated using Autodesk Inventor. In addition, the performance of the VSA was compared to that of the continuous genetic algorithm . The numerical results show that the programmed model has the physical and methodological characteristics needed to produce a better output than conventional design techniques. Therefore, this model can be a powerful tool to solve nonlinear non-convex optimization problems such as the case investigated here.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceArabian Journal for Science and Engineering (2021)spa
dc.titleOptimal Design of Transmission Shafts Using a Vortex Search Algorithmspa
dcterms.bibliographicCitationOptimal Design of Transmission Shafts Using a Vortex Search Algorithmspa
dcterms.bibliographicCitationKim, H.S., Lee, D.G. Optimal design of the press fit joint for a hybrid aluminum/composite drive shaft (2005) Composite Structures, 70 (1), pp. 33-47. Cited 30 times. doi: 10.1016/j.compstruct.2004.08.010spa
dcterms.bibliographicCitationRodriguez-Cabal, M.A., Marín, J.A., Grisales-Noreña, L.F., Montoya, O.D., Del Rio, J.A.S. Optimization of a drive shaft using PSO algorithm (2018) WSEAS Transactions on Applied and Theoretical Mechanics, 13, pp. 130-139. http://www.wseas.org/multimedia/journals/mechanics/2018/a285111-349.pdfspa
dcterms.bibliographicCitationReddy, P.S.K., Nagaraju, C. Weight optimization and Finite Element Analysis of Composite automotive drive shaft for Maximum Stiffness (2017) Materials Today: Proceedings, Part A 4 (2), pp. 2390-2396. Cited 11 times. http://www.journals.elsevier.com/materials-today-proceedings/ doi: 10.1016/j.matpr.2017.02.088spa
dcterms.bibliographicCitationDe Melo, V.V., Carosio, G.L.C. Investigating Multi-View Differential Evolution for solving constrained engineering design problems (2013) Expert Systems with Applications, 40 (9), pp. 3370-3377. Cited 47 times. doi: 10.1016/j.eswa.2012.12.045spa
dcterms.bibliographicCitationHusseinzadeh Kashan, A. An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA) (2011) CAD Computer Aided Design, 43 (12), pp. 1769-1792. Cited 96 times. doi: 10.1016/j.cad.2011.07.00spa
dcterms.bibliographicCitationAlguliyev, R.M., Aliguliyev, R.M., Abdullayeva, F.J. PSO+K-means algorithm for anomaly detection in big data (Open Access) (2019) Statistics, Optimization and Information Computing, 7 (2), pp. 348-359. Cited 4 times. http://www.iapress.org/index.php/soic/article/download/soic.190606/492 doi: 10.19139/soic.v7i2.623spa
dcterms.bibliographicCitationMendi, F., Başkal, T., Boran, K., Boran, F.E. Optimization of module, shaft diameter and rolling bearing for spur gear through genetic algorithm (2010) Expert Systems with Applications, 37 (12), pp. 8058-8064. Cited 63 times. doi: 10.1016/j.eswa.2010.05.082spa
dcterms.bibliographicCitationChoi, B.G., Yang, B.S. Optimum shape design of rotor shafts using genetic algorithm (2000) JVC/Journal of Vibration and Control, 6 (2), pp. 207-222. Cited 45 times. https://journals.sagepub.com/home/jvc doi: 10.1177/107754630000600203spa
dcterms.bibliographicCitationÖzkış, A., Babalık, A. A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm (2017) Information Sciences, 402, pp. 124-148. Cited 29 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2017.03.026spa
dcterms.bibliographicCitationDoʇan, B., Ölmez, T. A new metaheuristic for numerical function optimization: Vortex Search algorithm (2015) Information Sciences, 293, pp. 125-145. Cited 137 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2014.08.053spa
dcterms.bibliographicCitationMontoya, O.D., Gil-Gonzalez, W., Grisales-Norena, L.F. Vortex search algorithm for optimal power flow analysis in DC resistive networks with CPLs. IEEE Trans (2019) Circuits Syst. II Express Briefs, 7747 (c), p. 1. Cited 3 times.spa
dcterms.bibliographicCitationNadeem, S.K.S., Giridhara, G., Rangavittal, H.K. A Review on the design and analysis of composite drive shaft (2018) Materials Today: Proceedings, Part 3 5 (1), pp. 2738-2741. Cited 9 times. http://www.journals.elsevier.com/materials-today-proceedings/ doi: 10.1016/j.matpr.2018.01.058spa
dcterms.bibliographicCitationRodriguez-Cabal, M.A., Grisales-Norẽa, L.F., Ardila Maŕn, J., Montoya, O.D. Optimal design of transmission shafts: A continuous genetic algorithm approach (Open Access) (2019) Statistics, Optimization and Information Computing, 7 (4), pp. 802-815. Cited 2 times. http://www.iapress.org/index.php/soic/article/download/soic.v7i4.1213/631 doi: 10.19139/soic-2310-5070-641spa
dcterms.bibliographicCitationMott, R.L. Machine elements in mechanical design. (1985) . Cited 17 times. ISBN: 0675203260; 978-067520326-5spa
dcterms.bibliographicCitationAlejandra, M.G., Alberto, D. Optimización de la geometría de un eje aplicando algoritmos geneticos Optimising a shaft s geometry by applying genetic algorithms (2005) Ingeniería E Investigación, 25 (2), pp. 15-23. Cited 3 times.spa
dcterms.bibliographicCitationNorton, R.L. (1999) Diseño de máquinas, 1. Cited 23 times. Prentice Hall, Londospa
dcterms.bibliographicCitation(2019) MatWeb. AISI Steel, cold drawspa
dcterms.bibliographicCitationBeer, F.P., Johnstons, F.P., Mazurek, E., Eisenberg, R., David, F., Beer, E.R. (2010) Mecanica Vectorial Para Ingenieros, 1, p. 654. . Mc Graw Hillspa
dcterms.bibliographicCitationComino, P., Carigliano, S. (2013) Free Beam Calculator. Cited 2 times.spa
dcterms.bibliographicCitationDoǧanşahin, K., Kekezoǧlu, B., Yumurtaci, R., Erdinç, O., Catalão, J.P.S. Maximum permissible integration capacity of renewable DG units based on system loads (Open Access) (2018) Energies, 11 (1), art. no. en11010255. Cited 12 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11010255spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Grisales-Noreña, L.F. Optimal power dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem (2018) WSEAS Transactions on Power Systems, 13, pp. 335-346. Cited 15 times. http://wseas.org/wseas/cms.action?id=4057spa
dcterms.bibliographicCitationMastorakis, N.E. Solving non-linear equations via genetic algorithms (2005) Proc. Sixth WSEAS Int. Conf. Evol. Comput., 2005, pp. 24-28. Cited 13 times.spa
dcterms.bibliographicCitationGiri, C., Tipparthi, D.K.R., Chattopadhyay, S. A genetic algorithm based approach for system-on-chip test scheduling using dual speed TAM with power constraint (2008) WSEAS Transactions on Circuits and Systems, 7 (5), pp. 416-427. Cited 4 times. http://www.wseas.us/e-library/transactions/circuits/2008/30-728.pdfspa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://link.springer.com/article/10.1007/s13369-020-05121-1
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1007/s13369-020-05121-1
dc.subject.keywordsMechanical analysisspa
dc.subject.keywordsMachine elements designspa
dc.subject.keywordsWeight shaft optimizationspa
dc.subject.keywordsVortex search algorithmspa
dc.subject.keywordsContinuous genetic algorithmspa
dc.subject.keywordsNonlinear non-convex optimizationspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.