Mostrar el registro sencillo del ítem
Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector
dc.contributor.author | Marín-Quintero, J. | |
dc.contributor.author | Orozco-Henao, C. | |
dc.contributor.author | Percybrooks, W.S. | |
dc.contributor.author | Vélez, Juan C. | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Gil-González, Walter | |
dc.date.accessioned | 2021-02-17T21:08:17Z | |
dc.date.available | 2021-02-17T21:08:17Z | |
dc.date.issued | 2021-01 | |
dc.date.submitted | 2021-02-17 | |
dc.identifier.citation | J. Marín-Quintero, C. Orozco-Henao, W.S. Percybrooks et al., Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector, Applied Soft Computing Journal (2020), doi: https://doi.org/10.1016/j.asoc.2020.106839. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10042 | |
dc.description.abstract | Conventional protection schemes have proven insufficient for the protection of Active Distribution Networks (ADN). Novel protection schemes with an adaptive approach should be developed to guarantee the protection of ADN under all their operating conditions. This paper proposes an ADN adaptive protection methodology, which is based on an intelligent approach fault detector over locally available measurements. This approach uses Machine Learning (ML) based techniques to reduce the strong dependence of the adaptive protection schemes on the availability of communication systems and to determine if, over a fault condition, an Intelligent Electronic Device (IED) should operate considering the changes in operational conditions of an ADN. Additionally, the methodology takes into account different and remarkable recommendations for the use of ML techniques. The proposed methodology is validated on the modified IEEE 34-nodes test feeder. Additionally, it takes into consideration typical features of ADN and micro-grids like the load imbalance, reconfiguration, changes in impedance upstream from the micro-grid, and off-grid/on-grid operation modes. The results demonstrate the flexibility and simplicity of the methodology to determine the best accuracy performance among several ML models. Besides, they show the methodology’s versatility to find the suitable ML model for IEDs located on different zones of an ADN. The ease of design’s implementation, formulation of parameters, and promising test results indicate the potential for real-life applications. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | Applied Soft Computing Volume 98, January 2021, 106839 | spa |
dc.title | Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector | spa |
dcterms.bibliographicCitation | N. Hatziargyriou, Microgrids: Architectures and Control. 2013. | spa |
dcterms.bibliographicCitation | J. A. Pec, “Integrating distributed generation into electric power systems : A review of drivers, challenges and opportunities,” vol. 77, no. 2007, pp. 1189–1203, 2010. | spa |
dcterms.bibliographicCitation | H. Ji, C. Wang, P. Li, G. Song, H. Yu, and J. Wu, “Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators,” Appl. Energy, vol. 239, no. February, pp. 706–714, 2019. | spa |
dcterms.bibliographicCitation | S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active Distribution Networks, Vol 1. London: The Institution of Engineering and Technology, 2009. | spa |
dcterms.bibliographicCitation | R. Mylavarapu and Suraparaju Venkata, “Microgrid protection systems,” in Micro-Grids - Applications, Solutions, Case Studies, and Demonstrations, Vol 1., IntechOpen, Ed. London: IntechOpen, 2019. | spa |
dcterms.bibliographicCitation | W. Allen, “Effects of wide-area control on the protection and operation of distribution networks,” 2009 Power Syst. Conf. Adv. Metering, Prot. Control. Commun. Distrib. Resour. PSC 2009, no. March 2009, pp. 222–231, 2009. | spa |
dcterms.bibliographicCitation | F. Friend, G. Johnson, and B. Mugalian, “Effect of distribution automation on protective relaying,” in 2014 67th Annual Conference for Protective Relay Engineers, CPRE 2014, no. January, 2014, pp. 193–228. | spa |
dcterms.bibliographicCitation | S. Kar, S. R. Samantaray, S. Kar, and S. R. Samantaray, “A Fuzzy Rule Base Approach for Intelligent Protection of Microgrids A Fuzzy Rule Base Approach for Intelligent Protection of Microgrids,” Electr. Power Components Syst., vol. 5008, 2015. | spa |
dcterms.bibliographicCitation | S. Kar, “A comprehensive protection scheme for micro-grid using fuzzy rule base approach,” Energy Syst., 2016. | spa |
dcterms.bibliographicCitation | O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management – part II : System operation , power quality and protection,” Renew. Sustain. Energy Rev., vol. 36, pp. 440–451, 2014. | spa |
dcterms.bibliographicCitation | M. Mishra, R. Ranjan, and P. Kumar, “A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection,” Ain Shams Eng. J., vol. 10, no. 2, pp. 307–318, 2019. | spa |
dcterms.bibliographicCitation | C. Cepeda, C. Orozco-henao, W. Percybrooks, J. Diego, O. D. Montoya, and W. Gil-gonz, “Intelligent Fault Detection System for Microgrids,” Energies, vol. 13, no. 5, pp. 1–21, 2020. | spa |
dcterms.bibliographicCitation | C. I. Chen, C. K. Lan, Y. C. Chen, C. H. Chen, and Y. R. Chang, “Wavelet Energy Fuzzy Neural Network ‐ Based Fault Protection System for Microgrid,” 2020. | spa |
dcterms.bibliographicCitation | S. Kar, S. R. Samantaray, and M. D. Zadeh, “Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme,” IEEE Syst. J., vol. 11, no. 2, pp. 1161–1169, 2017. | spa |
dcterms.bibliographicCitation | D. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2295– 2304, 2016. | spa |
dcterms.bibliographicCitation | H. F. Habib, M. El Hariri, A. Elsayed, and O. Mohammed, “Utilization of Supercapacitors in Adaptive Protection Applications for Resiliency against Communication Failures : A Size and Cost Optimization Case Study,” in 2017 IEEE Industry Applications Society Annual Meeting, 2017, pp. 1–8. | spa |
dcterms.bibliographicCitation | W.-J. Tang and H.-T. Yang, “Data Mining and Neural Networks Based Self-Adaptive Protection Strategies for Distribution Systems with DGs and FCLs,” Energies, vol. 11, no. 2, p. 426, 2018. | spa |
dcterms.bibliographicCitation | S. Golestan, M. Savaghebi, S. Beheshtaein, J. M. Guerrero, and R. Cuzner, “A Modified Secondary-Control Based Fault Current Limiter for Four-Wire Three Phase DGs,” IEEE Trans. Ind. Electron., vol. 0046, no. c, pp. 1–1, 2018. | spa |
dcterms.bibliographicCitation | F. Mumtaz and I. S. Bayram, “Planning, Operation, and Protection of Microgrids: An Overview,” Energy Procedia, vol. 107, no. September 2016, pp. 94–100, 2017. [20] S. A. Hosseini, H. A. Abyaneh, S. H. H. Sadeghi, F. Razavi, and A. Nasiri, “An overview of microgrid protection methods and the factors involved,” Renew. Sustain. Energy Rev., vol. 64, pp. 174–186, 2016. | spa |
dcterms.bibliographicCitation | P. Mahat, Z. Chen, B. Bak-Jensen, and C. L. Bak, “A simple adaptive overcurrent protection of distribution systems with distributed generation,” IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 428–437, 2011. | spa |
dcterms.bibliographicCitation | O. Núñez-Mata, R. Palma-Behnke, F. Valencia, P. Mendoza-Araya, and G. Jiménez-Estévez, “Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy,” Energies, vol. 11, no. 2, p. 308, 2018. | spa |
dcterms.bibliographicCitation | C. Durga, M. Biswal, and A. Y. Abdelaziz, “Adaptive differential protection scheme for wind farm integrated power network,” Electr. Power Syst. Res., vol. 187, no. January, p. 106452, 2020. | spa |
dcterms.bibliographicCitation | M. Alonso, H. Amaris, and D. Alcala, “Smart Sensors for Smart Grid Reliability,” Sensors — Open Access J., vol. 20, no. 8, pp. 1–23, 2020. | spa |
dcterms.bibliographicCitation | H. F. Zhai, M. Yang, B. Chen, and N. Kang, “Electrical Power and Energy Systems Dynamic recon fi guration of three-phase unbalanced distribution networks,” Electr. Power Energy Syst., vol. 99, no. December 2017, pp. 1–10, 2018. | spa |
dcterms.bibliographicCitation | S. K. Bhattacharya and S. K. Goswami, “Electric Power Components and Systems Distribution Network Reconfiguration Considering Protection Coordination Constraints,” vol. 5008, 2008. | spa |
dcterms.bibliographicCitation | E. E. Bernabeu, J. S. Thorp, L. Fellow, and V. Centeno, “Methodology for a Security / Dependability Adaptive Protection Scheme Based on Data Mining,” IEEE Trans. Power Deliv., vol. 27, no. 1, pp. 104–111, 2012. | spa |
dcterms.bibliographicCitation | S. A. Gopalan, V. Sreeram, and H. H. C. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renew. Sustain. Energy Rev., vol. 32, pp. 222–228, 2014. | spa |
dcterms.bibliographicCitation | B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renew. Sustain. Energy Rev., vol. 67, pp. 988–997, 2017. | spa |
dcterms.bibliographicCitation | S. C. Hsieh, C. S. Chen, C. T. Tsai, C. T. Hsu, and C. H. Lin, “Adaptive relay setting for distribution systems considering operation scenarios of wind generators,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1356–1363, 2014. | spa |
dcterms.bibliographicCitation | S. A. M. Javadian, M. Haghifam, S. M. T. Bathaee, and M. F. Firoozabad, “Electrical Power and Energy Systems Adaptive centralized protection scheme for distribution systems with DG using risk analysis for protective devices placement,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 337–345, 2013. | spa |
dcterms.bibliographicCitation | H. F. Habib and O. Mohammed, “Decentralized Multi-Agent System for Protection and the Power Restoration Process in Microgrids,” IEEE Green Technol. Conf., pp. 358–364, 2017. | spa |
dcterms.bibliographicCitation | L. Wehenkel, “Machine-Learning Approaches to Power-System Security Assessment,” IEEE Expert, vol. 12, pp. 60–72, 19997. | spa |
dcterms.bibliographicCitation | S. Shen, D. Lin, and H. Wang, “An Adaptive Protection Scheme for Distribution Systems with DGs Based on Optimized Thevenin Equivalent Parameters Estimation,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 411–419, 2017. | spa |
dcterms.bibliographicCitation | M. Banko and E. Brill, “Scaling to Very Very Large Corpora for Natural Language Disambiguation,” in Proceedings of 39th Annual Meeting of the Association for Computational Linguistics (ACL 2001), Association for Computational Linguistics, 2001, pp. 26–33. | spa |
dcterms.bibliographicCitation | B. Krawczyk, “Learning from imbalanced data : open challenges and future directions,” Prog. Artif. Intell., vol. 5, no. 4, pp. 221–232, 2016. | spa |
dcterms.bibliographicCitation | S. R. Samantaray, “A data-mining model for protection of facts-based transmission line,” IEEE Trans. Power Deliv., vol. 28, no. 2, pp. 612–618, 2013. | spa |
dcterms.bibliographicCitation | Keogh E and Mueen A, “Curse of Dimensionality,” in Encyclopedia of Machine Learning and Data Mining, Boston: Springer, 2017. | spa |
dcterms.bibliographicCitation | I. Guyon and Andr´e Elisseeff, “An Introduction of Variable and Feature Selection An Introduction to Variable and Feature Selection 1 Introduction,” J. Mach. Learn. Res., vol. 3, no. April, pp. 1157–1182, 2003. | spa |
dcterms.bibliographicCitation | Y. Bengio, “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Neural Networks: Tricks of the Trade, Springer, 2013. [41] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009. | spa |
dcterms.bibliographicCitation | I. Guyon and T. B. Laboratories, “A scaling law for the validation-set training-set size ratio,” in AT&T Bell Laboratories, Berkeley, 1997, pp. 1–11. | spa |
dcterms.bibliographicCitation | M. A. Shahin, H. R. Maier, and M. B. Jaksa, “Data Division for Developing Neural Networks Applied to Geotechnical Engineering,” J. Comput. Civ. Eng., vol. 18, no. April, pp. 105–114, 2004. | spa |
dcterms.bibliographicCitation | P. Kumar, V. Kumar, and R. Pratap, “Design and verification of hardcore reconfigurable relay for islanding detection and subsequent mode adaptation of microgrid,” Int. Trans. Electr. Energy Syst., no. November 2018, pp. 1–19, 2019. | spa |
dcterms.bibliographicCitation | P. V Dikarev, “Intelligent System Current Protection from Short Circuits,” 2019 Int. Conf. Ind. Eng. Appl. Manuf., pp. 1–5, 2019. | spa |
dcterms.bibliographicCitation | Distribution System Analysis Subcommittee, “IEEE 34 Node Test Feeder.” 2001. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://www.sciencedirect.com/science/article/abs/pii/S1568494620307778 | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1016/j.asoc.2020.106839 | |
dc.subject.keywords | Fault detector | spa |
dc.subject.keywords | Active distribution networks | spa |
dc.subject.keywords | Micro-grid | spa |
dc.subject.keywords | Adaptive protection | spa |
dc.subject.keywords | Machine learning | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.