Mostrar el registro sencillo del ítem

dc.contributor.authorMarín-Quintero, J.
dc.contributor.authorOrozco-Henao, C.
dc.contributor.authorPercybrooks, W.S.
dc.contributor.authorVélez, Juan C.
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.date.accessioned2021-02-17T21:08:17Z
dc.date.available2021-02-17T21:08:17Z
dc.date.issued2021-01
dc.date.submitted2021-02-17
dc.identifier.citationJ. Marín-Quintero, C. Orozco-Henao, W.S. Percybrooks et al., Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector, Applied Soft Computing Journal (2020), doi: https://doi.org/10.1016/j.asoc.2020.106839.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10042
dc.description.abstractConventional protection schemes have proven insufficient for the protection of Active Distribution Networks (ADN). Novel protection schemes with an adaptive approach should be developed to guarantee the protection of ADN under all their operating conditions. This paper proposes an ADN adaptive protection methodology, which is based on an intelligent approach fault detector over locally available measurements. This approach uses Machine Learning (ML) based techniques to reduce the strong dependence of the adaptive protection schemes on the availability of communication systems and to determine if, over a fault condition, an Intelligent Electronic Device (IED) should operate considering the changes in operational conditions of an ADN. Additionally, the methodology takes into account different and remarkable recommendations for the use of ML techniques. The proposed methodology is validated on the modified IEEE 34-nodes test feeder. Additionally, it takes into consideration typical features of ADN and micro-grids like the load imbalance, reconfiguration, changes in impedance upstream from the micro-grid, and off-grid/on-grid operation modes. The results demonstrate the flexibility and simplicity of the methodology to determine the best accuracy performance among several ML models. Besides, they show the methodology’s versatility to find the suitable ML model for IEDs located on different zones of an ADN. The ease of design’s implementation, formulation of parameters, and promising test results indicate the potential for real-life applications.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceApplied Soft Computing Volume 98, January 2021, 106839spa
dc.titleToward an adaptive protection scheme in active distribution networks: Intelligent approach fault detectorspa
dcterms.bibliographicCitationN. Hatziargyriou, Microgrids: Architectures and Control. 2013.spa
dcterms.bibliographicCitationJ. A. Pec, “Integrating distributed generation into electric power systems : A review of drivers, challenges and opportunities,” vol. 77, no. 2007, pp. 1189–1203, 2010.spa
dcterms.bibliographicCitationH. Ji, C. Wang, P. Li, G. Song, H. Yu, and J. Wu, “Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators,” Appl. Energy, vol. 239, no. February, pp. 706–714, 2019.spa
dcterms.bibliographicCitationS. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active Distribution Networks, Vol 1. London: The Institution of Engineering and Technology, 2009.spa
dcterms.bibliographicCitationR. Mylavarapu and Suraparaju Venkata, “Microgrid protection systems,” in Micro-Grids - Applications, Solutions, Case Studies, and Demonstrations, Vol 1., IntechOpen, Ed. London: IntechOpen, 2019.spa
dcterms.bibliographicCitationW. Allen, “Effects of wide-area control on the protection and operation of distribution networks,” 2009 Power Syst. Conf. Adv. Metering, Prot. Control. Commun. Distrib. Resour. PSC 2009, no. March 2009, pp. 222–231, 2009.spa
dcterms.bibliographicCitationF. Friend, G. Johnson, and B. Mugalian, “Effect of distribution automation on protective relaying,” in 2014 67th Annual Conference for Protective Relay Engineers, CPRE 2014, no. January, 2014, pp. 193–228.spa
dcterms.bibliographicCitationS. Kar, S. R. Samantaray, S. Kar, and S. R. Samantaray, “A Fuzzy Rule Base Approach for Intelligent Protection of Microgrids A Fuzzy Rule Base Approach for Intelligent Protection of Microgrids,” Electr. Power Components Syst., vol. 5008, 2015.spa
dcterms.bibliographicCitationS. Kar, “A comprehensive protection scheme for micro-grid using fuzzy rule base approach,” Energy Syst., 2016.spa
dcterms.bibliographicCitationO. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management – part II : System operation , power quality and protection,” Renew. Sustain. Energy Rev., vol. 36, pp. 440–451, 2014.spa
dcterms.bibliographicCitationM. Mishra, R. Ranjan, and P. Kumar, “A combined mathematical morphology and extreme learning machine techniques based approach to micro-grid protection,” Ain Shams Eng. J., vol. 10, no. 2, pp. 307–318, 2019.spa
dcterms.bibliographicCitationC. Cepeda, C. Orozco-henao, W. Percybrooks, J. Diego, O. D. Montoya, and W. Gil-gonz, “Intelligent Fault Detection System for Microgrids,” Energies, vol. 13, no. 5, pp. 1–21, 2020.spa
dcterms.bibliographicCitationC. I. Chen, C. K. Lan, Y. C. Chen, C. H. Chen, and Y. R. Chang, “Wavelet Energy Fuzzy Neural Network ‐ Based Fault Protection System for Microgrid,” 2020.spa
dcterms.bibliographicCitationS. Kar, S. R. Samantaray, and M. D. Zadeh, “Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme,” IEEE Syst. J., vol. 11, no. 2, pp. 1161–1169, 2017.spa
dcterms.bibliographicCitationD. P. Mishra, S. R. Samantaray, and G. Joos, “A combined wavelet and data-mining based intelligent protection scheme for microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 5, pp. 2295– 2304, 2016.spa
dcterms.bibliographicCitationH. F. Habib, M. El Hariri, A. Elsayed, and O. Mohammed, “Utilization of Supercapacitors in Adaptive Protection Applications for Resiliency against Communication Failures : A Size and Cost Optimization Case Study,” in 2017 IEEE Industry Applications Society Annual Meeting, 2017, pp. 1–8.spa
dcterms.bibliographicCitationW.-J. Tang and H.-T. Yang, “Data Mining and Neural Networks Based Self-Adaptive Protection Strategies for Distribution Systems with DGs and FCLs,” Energies, vol. 11, no. 2, p. 426, 2018.spa
dcterms.bibliographicCitationS. Golestan, M. Savaghebi, S. Beheshtaein, J. M. Guerrero, and R. Cuzner, “A Modified Secondary-Control Based Fault Current Limiter for Four-Wire Three Phase DGs,” IEEE Trans. Ind. Electron., vol. 0046, no. c, pp. 1–1, 2018.spa
dcterms.bibliographicCitationF. Mumtaz and I. S. Bayram, “Planning, Operation, and Protection of Microgrids: An Overview,” Energy Procedia, vol. 107, no. September 2016, pp. 94–100, 2017. [20] S. A. Hosseini, H. A. Abyaneh, S. H. H. Sadeghi, F. Razavi, and A. Nasiri, “An overview of microgrid protection methods and the factors involved,” Renew. Sustain. Energy Rev., vol. 64, pp. 174–186, 2016.spa
dcterms.bibliographicCitationP. Mahat, Z. Chen, B. Bak-Jensen, and C. L. Bak, “A simple adaptive overcurrent protection of distribution systems with distributed generation,” IEEE Trans. Smart Grid, vol. 2, no. 3, pp. 428–437, 2011.spa
dcterms.bibliographicCitationO. Núñez-Mata, R. Palma-Behnke, F. Valencia, P. Mendoza-Araya, and G. Jiménez-Estévez, “Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy,” Energies, vol. 11, no. 2, p. 308, 2018.spa
dcterms.bibliographicCitationC. Durga, M. Biswal, and A. Y. Abdelaziz, “Adaptive differential protection scheme for wind farm integrated power network,” Electr. Power Syst. Res., vol. 187, no. January, p. 106452, 2020.spa
dcterms.bibliographicCitationM. Alonso, H. Amaris, and D. Alcala, “Smart Sensors for Smart Grid Reliability,” Sensors — Open Access J., vol. 20, no. 8, pp. 1–23, 2020.spa
dcterms.bibliographicCitationH. F. Zhai, M. Yang, B. Chen, and N. Kang, “Electrical Power and Energy Systems Dynamic recon fi guration of three-phase unbalanced distribution networks,” Electr. Power Energy Syst., vol. 99, no. December 2017, pp. 1–10, 2018.spa
dcterms.bibliographicCitationS. K. Bhattacharya and S. K. Goswami, “Electric Power Components and Systems Distribution Network Reconfiguration Considering Protection Coordination Constraints,” vol. 5008, 2008.spa
dcterms.bibliographicCitationE. E. Bernabeu, J. S. Thorp, L. Fellow, and V. Centeno, “Methodology for a Security / Dependability Adaptive Protection Scheme Based on Data Mining,” IEEE Trans. Power Deliv., vol. 27, no. 1, pp. 104–111, 2012.spa
dcterms.bibliographicCitationS. A. Gopalan, V. Sreeram, and H. H. C. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renew. Sustain. Energy Rev., vol. 32, pp. 222–228, 2014.spa
dcterms.bibliographicCitationB. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” Renew. Sustain. Energy Rev., vol. 67, pp. 988–997, 2017.spa
dcterms.bibliographicCitationS. C. Hsieh, C. S. Chen, C. T. Tsai, C. T. Hsu, and C. H. Lin, “Adaptive relay setting for distribution systems considering operation scenarios of wind generators,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1356–1363, 2014.spa
dcterms.bibliographicCitationS. A. M. Javadian, M. Haghifam, S. M. T. Bathaee, and M. F. Firoozabad, “Electrical Power and Energy Systems Adaptive centralized protection scheme for distribution systems with DG using risk analysis for protective devices placement,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 337–345, 2013.spa
dcterms.bibliographicCitationH. F. Habib and O. Mohammed, “Decentralized Multi-Agent System for Protection and the Power Restoration Process in Microgrids,” IEEE Green Technol. Conf., pp. 358–364, 2017.spa
dcterms.bibliographicCitationL. Wehenkel, “Machine-Learning Approaches to Power-System Security Assessment,” IEEE Expert, vol. 12, pp. 60–72, 19997.spa
dcterms.bibliographicCitationS. Shen, D. Lin, and H. Wang, “An Adaptive Protection Scheme for Distribution Systems with DGs Based on Optimized Thevenin Equivalent Parameters Estimation,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 411–419, 2017.spa
dcterms.bibliographicCitationM. Banko and E. Brill, “Scaling to Very Very Large Corpora for Natural Language Disambiguation,” in Proceedings of 39th Annual Meeting of the Association for Computational Linguistics (ACL 2001), Association for Computational Linguistics, 2001, pp. 26–33.spa
dcterms.bibliographicCitationB. Krawczyk, “Learning from imbalanced data : open challenges and future directions,” Prog. Artif. Intell., vol. 5, no. 4, pp. 221–232, 2016.spa
dcterms.bibliographicCitationS. R. Samantaray, “A data-mining model for protection of facts-based transmission line,” IEEE Trans. Power Deliv., vol. 28, no. 2, pp. 612–618, 2013.spa
dcterms.bibliographicCitationKeogh E and Mueen A, “Curse of Dimensionality,” in Encyclopedia of Machine Learning and Data Mining, Boston: Springer, 2017.spa
dcterms.bibliographicCitationI. Guyon and Andr´e Elisseeff, “An Introduction of Variable and Feature Selection An Introduction to Variable and Feature Selection 1 Introduction,” J. Mach. Learn. Res., vol. 3, no. April, pp. 1157–1182, 2003.spa
dcterms.bibliographicCitationY. Bengio, “Practical Recommendations for Gradient-Based Training of Deep Architectures,” in Neural Networks: Tricks of the Trade, Springer, 2013. [41] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace, 2009.spa
dcterms.bibliographicCitationI. Guyon and T. B. Laboratories, “A scaling law for the validation-set training-set size ratio,” in AT&T Bell Laboratories, Berkeley, 1997, pp. 1–11.spa
dcterms.bibliographicCitationM. A. Shahin, H. R. Maier, and M. B. Jaksa, “Data Division for Developing Neural Networks Applied to Geotechnical Engineering,” J. Comput. Civ. Eng., vol. 18, no. April, pp. 105–114, 2004.spa
dcterms.bibliographicCitationP. Kumar, V. Kumar, and R. Pratap, “Design and verification of hardcore reconfigurable relay for islanding detection and subsequent mode adaptation of microgrid,” Int. Trans. Electr. Energy Syst., no. November 2018, pp. 1–19, 2019.spa
dcterms.bibliographicCitationP. V Dikarev, “Intelligent System Current Protection from Short Circuits,” 2019 Int. Conf. Ind. Eng. Appl. Manuf., pp. 1–5, 2019.spa
dcterms.bibliographicCitationDistribution System Analysis Subcommittee, “IEEE 34 Node Test Feeder.” 2001.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.sciencedirect.com/science/article/abs/pii/S1568494620307778
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1016/j.asoc.2020.106839
dc.subject.keywordsFault detectorspa
dc.subject.keywordsActive distribution networksspa
dc.subject.keywordsMicro-gridspa
dc.subject.keywordsAdaptive protectionspa
dc.subject.keywordsMachine learningspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.