Mostrar el registro sencillo del ítem

dc.contributor.authorMolina-Cabrera, Alexander
dc.contributor.authorRios, Mario A.
dc.contributor.authorBesanger, Yvon
dc.contributor.authorHadjsaid, Nouredine
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2021-02-17T20:46:14Z
dc.date.available2021-02-17T20:46:14Z
dc.date.issued2021-01-18
dc.date.submitted2021-02-17
dc.identifier.citationMolina-Cabrera, Alexander; Ríos, Mario A.; Besanger, Yvon; Hadjsaid, Nouredine; Montoya, Oscar D. 2021. "Latencies in Power Systems: A Database-Based Time-Delay Compensation for Memory Controllers" Electronics 10, no. 2: 208. https://doi.org/10.3390/electronics10020208spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10039
dc.description.abstractTime-delay is inherent to communications schemes in power systems, and in a closed loop strategy the presence of latencies increases inter-area oscillations and security problems in tie-lines. Recently, Wide Area Measurement Systems (WAMS) have been introduced to improve observability and overcome slow-rate communications from traditional Supervisory Control and Data Acquisition (SCADA). However, there is a need for tackling time-delays in control strategies based in WAMS. For this purpose, this paper proposes an Enhanced Time Delay Compensator (ETDC) approach which manages varying time delays introducing the perspective of network latency instead dead time; also, ETDC takes advantage of real signals and measurements transmission procedure in WAMS building a closed-loop memory control for power systems. The strength of the proposal was tested satisfactorily in a widely studied benchmark model in which inter-area oscillations were excited properly.spa
dc.format.extent16 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2021, 10(2), 208spa
dc.titleLatencies in power systems: A database-based time-delay compensation for memory controllersspa
dcterms.bibliographicCitationKundur, P.; Balu, N.J.; Lauby, M.G. Power System Stability and Control; McGraw-Hill: New York, NY, USA, 1994spa
dcterms.bibliographicCitationMachowski, J.; Lubosny, Z.; Bialek, J.W.; BumbyJan, J.R. Power System Dynamics: Stability and Control; Wiley: Hoboken, NJ, USA, 2020.spa
dcterms.bibliographicCitationMittelstadt, W.A.; Krause, P.E.; Wilson, R.E.; Overholt, P.N.; Sobajic, D.J.; Hauer, J.F.; Rizy, D.T. The DOE Wide Area Measurement System (WAMS) Project: Demonstration of dynamic information technology for the future power system. In Proceedings of the Joint Conference on Fault and Disturbance Analysis: Precise Measurement in Power Systems, Washington DC, USA, 9–11 April 1996.spa
dcterms.bibliographicCitationIvanescu, D.; Hadjsaid, N.; Snyder, A.; Dion, J.M.; Dugard, L. Robust Stabilizing Control for an Interconnected Power System: Time Delay Approach. In Proceedings of the Fourteenth International Symposium of Mathematical Theory of Networks and Systems, Perpignan, France, 19–23 June 2000.spa
dcterms.bibliographicCitationIvanescu, D.; Snyder, A.F.; Dion, J.M.; Dugard, L.; Georges, D.; Hadjsaid, N. Control of an Interconnected Power System: A Time Delay Approach. IFAC Proc. Vol. 2001, 34, 449–454. [CrossRef]spa
dcterms.bibliographicCitationYounis, M.R.; Iravani, R. Wide-area damping control for inter-area oscillations: A comprehensive review. In Proceedings of the 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, 21–23 August 2013. [CrossRef]spa
dcterms.bibliographicCitationAboul-Ela, M.; Sallam, A.; McCalley, J.; Fouad, A. Damping controller design for power system oscillations using global signals. IEEE Trans. Power Syst. 1996, 11, 767–773. [CrossRef]spa
dcterms.bibliographicCitationZhu, K.; Chenine, M.; Nordström, L.; Holmström, S.; Ericsson, G. An Empirical Study of Synchrophasor Communication Delay in a Utility TCP/IP Network. Int. J. Emerging Electr. Power Syst. 2013, 14, 341–350. [CrossRef]spa
dcterms.bibliographicCitationLi, Y.; Yang, D.; Liu, F.; Cao, Y.; Rehtanz, C. Interconnected Power Systems; Springer: Berlin/Heidelberg, Germany, 2016. [CrossRef]spa
dcterms.bibliographicCitationLi, Y.; Zhou, Y.; Liu, F.; Cao, Y.; Rehtanz, C. Design and Implementation of Delay-Dependent Wide-Area Damping Control for Stability Enhancement of Power Systems. IEEE Trans. Smart Grid 2017, 8, 1831–1842. [CrossRef]spa
dcterms.bibliographicCitationGot Latency? Available online: https://selinc.com/solutions/synchrophasors/report/115256/ (accessed on 1 November 2012).spa
dcterms.bibliographicCitationMolina-Cabrera, A. Inter-area Oscillations in Time Delayed Power Systems: A Kalman Time Compensator and a Model Predictive Control Approach. Ph.D. Thesis, Universidad de los Andes, Bogotá D.C, Colombia, May 2018.spa
dcterms.bibliographicCitationMilano, F.; Anghel, M. Impact of Time Delays on Power System Stability. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 59, 889–900. [CrossRef]spa
dcterms.bibliographicCitationTaleb, M.; Zribi, M.; Rayan, M. On the Control of Time Delay Power Systems. Int. J. Innov. Inf. Control. 2013, 9, 769–792.spa
dcterms.bibliographicCitationBokharaie, V.; Sipahi, R.; Milano, F. Small-signal stability analysis of delayed power system stabilizers. In Proceedings of the 2014 Power Systems Computation Conference, Wroclaw, Poland, 18–22 August 2014. [CrossRef]spa
dcterms.bibliographicCitationSnyder, A.; Ivanescu, D.; HadjSaid, N.; Georges, D.; Margotin, T. Delayed-input wide-area stability control with synchronized phasor measurements and linear matrix inequalities. In Proceedings of the 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA, 16–20 July 2000. [CrossRef]spa
dcterms.bibliographicCitationWu, H.; Tsakalis, K.; Heydt, G. Evaluation of Time Delay Effects to Wide-Area Power System Stabilizer Design. IEEE Trans. Power Syst. 2004, 19, 1935–1941. [CrossRef]spa
dcterms.bibliographicCitationNormey-Rico, J.E.; Camacho, E.F. Dead-time compensators: A survey. Control Eng. Pract. 2008, 16, 407–428. [CrossRef]spa
dcterms.bibliographicCitationMajumder, R.; Chaudhuri, B.; Pal, B.; Zhong, Q.C. A unified Smith predictor approach for power system damping control design using remote signals. IEEE Trans. Control Syst. Technol. 2005, 13, 1063–1068. [CrossRef]spa
dcterms.bibliographicCitationMolina-Cabrera, A.; Gomez, O.; Rios, M.A. Smith predictor based backstepping control for damping power system oscillations. In Proceedings of the 2014 IEEE PES Transmission & Distribution Conference and Exposition—Latin America (PES T&D-LA), Medellin, Colombia, 10–13 September 2014. [CrossRef]spa
dcterms.bibliographicCitationChaudhuri, N.R.; Ray, S.; Majumder, R.; Chaudhuri, B. A New Approach to Continuous Latency Compensation With Adaptive Phasor Power Oscillation Damping Controller (POD). IEEE Trans. Power Syst. 2010, 25, 939–946. [CrossRef]spa
dcterms.bibliographicCitationMokhtari, M.; Aminifar, F.; Nazarpour, D.; Golshannavaz, S. Wide-area power oscillation damping with a fuzzy controller compensating the continuous communication delays. IEEE Trans. Power Syst. 2013, 28, 1997–2005. [CrossRef]spa
dcterms.bibliographicCitationYao, W.; Jiang, L.; Wen, J.Y.; Cheng, S.J.; Wu, Q.H. Networked predictive control based wide-area supplementary damping controller of SVC with communication delays compensation. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [CrossRef]spa
dcterms.bibliographicCitationEsquivel, P.; Romero, G.; Ornelas-Tellez, F.; Reyes, E.; Castañeda, C.E.; Morfin, O. Statistical inference of multivariable modal stability margins of time-delay perturbed power systems. Electr. Power Syst. Res. 2020, 181, 106186. [CrossRef]spa
dcterms.bibliographicCitationNie, Y.; Zhang, P.; Cai, G.; Zhao, Y.; Xu, M. Unified Smith predictor compensation and optimal damping control for time-delay power system. Int. J. Electr. Power Energy Syst. 2020, 117, 1–11. [CrossRef]spa
dcterms.bibliographicCitationNie, Y.; Zhang, P.; Cai, G.; Zhao, Y.; Xu, M. Fixed Low-Order Wide-Area Damping Controller Considering Time Delays and Power System Operation Uncertainties. IEEE Trans. Power Syst. 2020, 35, 3918–3926. [CrossRef]spa
dcterms.bibliographicCitationNan, J.; Yao, W.; Wen, J.; Peng, Y.; Fang, J.; Ai, X.; Wen, J. Wide-area power oscillation damper for DFIG-based wind farm with communication delay and packet dropout compensation. Int. J. Electr. Power Energy Syst. 2021, 124, 1–11. [CrossRef]spa
dcterms.bibliographicCitationYe, H.; Liu, Y. Design of model predictive controllers for adaptive damping of inter-area oscillations. Int. J. Electr. Power Energy Syst. 2013, 45, 509–518. [CrossRef]spa
dcterms.bibliographicCitationShiroei, M.; Ranjbar, A. Supervisory predictive control of power system load frequency control. Int. J. Electr. Power Energy Syst. 2014, 61, 70–80. [CrossRef]spa
dcterms.bibliographicCitationMa, M.; Chen, H.; Liu, X.; Allgöwer, F. Distributed model predictive load frequency control of multi-area interconnected power system. Int. J. Electr. Power Energy Syst. 2014, 62, 289–298. [CrossRef]spa
dcterms.bibliographicCitationLi, Y.; Rehtanz, C.; Yang, D.; Rüberg, S.; Häger, U. Robust high-voltage direct current stabilising control using wide-area measurement and taking transmission time delay into consideration. IET Gener. Transm. Distrib. 2011, 5, 289–297. [CrossRef]spa
dcterms.bibliographicCitationMolina-Cabrera, A.; Rios, M.A.; Velasquez, M.A. Model Predictive Control for non-linear delayed power systems. In Proceedings of the 2015 IEEE Eindhoven PowerTech, Eindhoven, The Netherlands, 29 June–2 July 2015. [CrossRef]spa
dcterms.bibliographicCitationMolina-Cabrera, A.; Rios, M.A. A Kalman Latency Compensation Strategy for Model Predictive Control to Damp Inter-Area Oscillations in Delayed Power Systems. Int. Rev. Electr. Eng. 2016, 11, 296. [CrossRef]spa
dcterms.bibliographicCitationMolina-Cabrera, A.; Rios, M.A.; Besanger, Y.; HadjSaid, N. A latencies tolerant model predictive control approach to damp Inter-area oscillations in delayed power systems. Int. J. Electr. Power Energy Syst. 2018, 98, 199–208. [CrossRef]spa
dcterms.bibliographicCitationJohnson, A.; Wen, J.; Wang, J.; Liu, E.; Hu, Y. Integrated system architecture and technology roadmap toward WAMPAC. In Proceedings of the ISGT 2011, Anaheim, CA, USA, 17–19 January 2011. [CrossRef]spa
dcterms.bibliographicCitationAshton, P.M.; Taylor, G.A.; Irving, M.R.; Carter, A.M.; Bradley, M.E. Prospective Wide Area Monitoring of the Great Britain Transmission System using Phasor Measurement Units. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [CrossRef]spa
dcterms.bibliographicCitationHossain, E.; Han, Z.; Vincent, H. Smart Grid Communications and Networking; Cambridge University Press: Cambridge, UK, 2009. [CrossRef]spa
dcterms.bibliographicCitationIEEE Standard for Synchrophasor Measurements for Power Systems. Available online: https://ieeexplore.ieee.org/document/61 11219 (accessed on 28 December 2011).spa
dcterms.bibliographicCitationLiu, W.; Luo, H.; Li, S.; Gao, D. Investigation and Modeling of Communication Delays in Wide Area Measurement System. In Proceedings of the 2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China, 27–29 March 2012. [CrossRef]spa
dcterms.bibliographicCitationMohagheghi, S.; Venayagamoorthy, G.K.; Harley, R.G. Optimal Wide Area Controller and State Predictor for a Power System. IEEE Trans. Power Syst. 2007, 22, 693–705. [CrossRef]spa
dcterms.bibliographicCitationAlbertos, P.; Garcia, P.; Sanz, R. Some contributions to the design of dead-time compensators. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016. [CrossRef]spa
dcterms.bibliographicCitationNaduvathuparambil, B.; Valenti, M.; Feliachi, A. Communication delays in wide area measurement systems. In Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No.02EX540), Huntsville, AL, USA, 19 March 2002. [CrossRef]spa
dcterms.bibliographicCitationGarcía, P.; Albertos, P. Dead-time-compensator for unstable MIMO systems with multiple time delays. J. Process Control 2010, 20, 877–884. [CrossRef]spa
dcterms.bibliographicCitationJames, B.R.; David, Q.M.; Moritz, M.D. Model Predictive Control Theory And Design; Nob Hill Publishing: London, UK, 2009.spa
dcterms.bibliographicCitationMolina-Cabrera, O.D.; Gil-González, W.; Molina-Cabrera, A. Second-Order Cone Approximation for Voltage Stability Analysis in Direct Current Networks. Symmetry 2020, 12, 1587. [CrossRef]spa
dcterms.bibliographicCitationGil-Gonzalez, W.; Serra, F.; Dominguez, J.; Campillo, J.; Montoya, O.D. Predictive Power Control for Electric Vehicle Charging Applications. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020. [CrossRef]spa
dcterms.bibliographicCitationGrisales-Noreña, W.; Molina-Cabrera, A.; Montoya, O.D.; Grisales-Noreña, L.F. An MI-SDP model for optimal location and sizing of distributed generators in DC grids that guarantees the optimal global solution. Appl. Sci. 2020, 10, 7681. [CrossRef]spa
dcterms.bibliographicCitationRawlings, J.B.; Mayne, D.Q.; Diehl, M.M. Model Predictive Control: Theory, Computation, and Design; Nob Hill Publishing: London, UK, 2013.spa
dcterms.bibliographicCitationBoukas, E.K.; Liu, Z.K. Deterministic and Stochastic Time-Delay Systems; Birkhäuser: Boston, MA, USA, 2002. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/10/2/208
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics10020208
dc.subject.keywordsPower systems analysisspa
dc.subject.keywordsInterconnected power systemsspa
dc.subject.keywordsLatenciesspa
dc.subject.keywordsTime-delay effectsspa
dc.subject.keywordsWide area monitoring systemsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.