Mostrar el registro sencillo del ítem

dc.contributor.authorMolina-Martin, Federico
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2021-02-17T20:43:49Z
dc.date.available2021-02-17T20:43:49Z
dc.date.issued2021-01-14
dc.date.submitted2021-02-17
dc.identifier.citationMolina-Martin, Federico; Montoya, Oscar D.; Grisales-Noreña, Luis F.; Hernández, Jesus C. 2021. "A Mixed-Integer Conic Formulation for Optimal Placement and Dimensioning of DGs in DC Distribution Networks" Electronics 10, no. 2: 176. https://doi.org/10.3390/electronics10020176spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10037
dc.description.abstractThe problem of the optimal placement and dimensioning of constant power sources (i.e., distributed generators) in electrical direct current (DC) distribution networks has been addressed in this research from the point of view of convex optimization. The original mixed-integer nonlinear programming (MINLP) model has been transformed into a mixed-integer conic equivalent via second-order cone programming, which produces a MI-SOCP approximation. The main advantage of the proposed MI-SOCP model is the possibility of ensuring global optimum finding using a combination of the branch and bound method to address the integer part of the problem (i.e., the location of the power sources) and the interior-point method to solve the dimensioning problem. Numerical results in the 21- and 69-node test feeders demonstrated its efficiency and robustness compared to an exact MINLP method available in GAMS: in the case of the 69-node test feeders, the exact MINLP solvers are stuck in local optimal solutions, while the proposed MI-SOCP model enables the finding of the global optimal solution. Additional simulations with daily load curves and photovoltaic sources confirmed the effectiveness of the proposed MI-SOCP methodology in locating and sizing distributed generators in DC grids; it also had low processing times since the location of three photovoltaic sources only requires 233.16s, which is 3.7 times faster than the time required by the SOCP model in the absence of power sources.spa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics 2021, 10(2), 176spa
dc.titleA mixed-integer conic formulation for optimal placement and dimensioning of DGs in DC distribution networksspa
dcterms.bibliographicCitationLotfi, H.; Khodaei, A. AC Versus DC Microgrid Planning. IEEE Trans. Smart Grid 2017, 8, 296–304. [CrossRef]spa
dcterms.bibliographicCitationSimiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506. [CrossRef]spa
dcterms.bibliographicCitationSimiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506. [CrossRef]spa
dcterms.bibliographicCitationMurillo-Yarce, D.; Garcés-Ruiz, A.; Escobar-Mejía, A. Passivity-Based Control for DC-Microgrids with Constant Power Terminals in Island Mode Operation. Rev. Fac. Ing. Univ. Antioq. 2018, 32–39. [CrossRef]spa
dcterms.bibliographicCitationKumar, J.; Agarwal, A.; Agarwal, V. A review on overall control of DC microgrids. J. Energy Storage 2019, 21, 113–138. [CrossRef]spa
dcterms.bibliographicCitationGao, F.; Kang, R.; Cao, J.; Yang, T. Primary and secondary control in DC microgrids: A review. J. Mod. Power Syst. Clean Energy 2018, 7, 227–242. [CrossRef]spa
dcterms.bibliographicCitationGarcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks. Eng. Sci. Technol. Int. J. 2020, 23, 527–533. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Garrido, V.M.; Grisales-Norena, L.F.; Gil-Gonzalez, W.; Garces, A.; Ramos-Paja, C.A. Optimal Location of DGs in DC Power Grids Using a MINLP Model Implemented in GAMS. In Proceedings of the 2018 IEEE 9th Power, Instrumentation and Measurement Meeting (EPIM), Salto, Uruguay, 14–16 November 2018. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W. A MIQP model for optimal location and sizing of dispatchable DGs in DC networks. Energy Syst. 2020. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322. [CrossRef]spa
dcterms.bibliographicCitationGrisales-Noreña, L.F.; Garzon-Rivera, O.D.; Montoya, O.D.; Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2019; pp. 214–225._19. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. Hybrid GA-SOCP Approach for Placement and Sizing of Distributed Generators in DC Networks. Appl. Sci. 2020, 10, 8616. [CrossRef]spa
dcterms.bibliographicCitationAltun, T.; Madani, R.; Yadav, A.P.; Nasir, A.; Davoudi, A. Optimal Reconfiguration of DC Networks. IEEE Trans. Power Syst. 2020, 35, 4272–4284. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Hernández, J.C.; Giral-Ramírez, D.A.; Medina-Quesada, A. A Mixed-Integer Nonlinear Programming Model for Optimal Reconfiguration of DC Distribution Feeders. Energies 2020, 13, 4440. [CrossRef]spa
dcterms.bibliographicCitationLi, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [CrossRef]spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21. [CrossRef]spa
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703. [CrossRef]spa
dcterms.bibliographicCitationJannesar, M.R.; Sedighi, A.; Savaghebi, M.; Anvari-Moghaddam, A.; Guerrero, J.M. Optimal probabilistic planning of passive harmonic filters in distribution networks with high penetration of photovoltaic generation. Int. J. Electr. Power Energy Syst. 2019, 110, 332–348. [CrossRef]spa
dcterms.bibliographicCitationNavidi, M.; Tafreshi, S.M.M.; Anvari-Moghaddam, A. A game theoretical approach for sub-transmission and generation expansion planning utilizing multi-regional energy systems. Int. J. Electr. Power Energy Syst. 2020, 118, 105758. [CrossRef]spa
dcterms.bibliographicCitationKhaligh, V.; Anvari-Moghaddam, A. Stochastic expansion planning of gas and electricity networks: A decentralized-based approach. Energy 2019, 186, 115889. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352. [CrossRef]spa
dcterms.bibliographicCitationGarcés, A.; Montoya, O.D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms. J. Control. Autom. Electr. Syst. 2019, 30, 794–801. [CrossRef]spa
dcterms.bibliographicCitationGil-González, W.; Molina-Cabrera, A.; Montoya, O.D.; Grisales-Noreña, L.F. An MI-SDP Model for Optimal Location and Sizing of Distributed Generators in DC Grids That Guarantees the Global Optimum. Appl. Sci. 2020, 10, 7681. [CrossRef]spa
dcterms.bibliographicCitationChen, Y.; Xiang, J.; Li, Y. SOCP Relaxations of Optimal Power Flow Problem Considering Current Margins in Radial Networks. Energies 2018, 11, 3164. [CrossRef]spa
dcterms.bibliographicCitationHindi, H. A tutorial on convex optimization. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004. [CrossRef]spa
dcterms.bibliographicCitationAlizadeh, F.; Goldfarb, D. Second-order cone programming. Math. Program. 2003, 95, 3–51. [CrossRef]spa
dcterms.bibliographicCitationJeyakumar, V.; Li, G. Exact Conic Programming Relaxations for a Class of Convex Polynomial Cone Programs. J. Optim. Theory Appl. 2016, 172, 156–178. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26. [CrossRef]spa
dcterms.bibliographicCitationGil-González, W.; Garces, A.; Montoya, O.D.; Hernández, J.C. A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks. Appl. Sci. 2021, 11, 627. [CrossRef]spa
dcterms.bibliographicCitationNesterov, Y. Lectures on Convex Optimization; Springer: Berlin/Heidelberg, Germany, 2018. [CrossRef]spa
dcterms.bibliographicCitationTuy, H. Convex Analysis and Global Optimization; Springer: Berlin/Heidelberg, Germany, 2016. [CrossRef]spa
dcterms.bibliographicCitationBenson, H.Y.; Ümit, S. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36. [CrossRef]spa
dcterms.bibliographicCitationLobo, M.S.; Vandenberghe, L.; Boyd, S.; Lebret, H. Applications of second-order cone programming. Linear Algebra Appl. 1998, 284, 193–228. [CrossRef]spa
dcterms.bibliographicCitationNesterov, Y.; Nemirovskii, A. Interior-Point Polynomial Algorithms in Convex Programming; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1994. [CrossRef]spa
dcterms.bibliographicCitationSturm, J.F. Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 1999, 11, 625–653. [CrossRef]spa
dcterms.bibliographicCitationToh, K.C.; Todd, M.J.; Tütüncü, R.H. SDPT3—A Matlab software package for semidefinite programming, Version 1.3. Optim. Methods Softw. 1999, 11, 545–581. [CrossRef]spa
dcterms.bibliographicCitationGrant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 9 November 2020).spa
dcterms.bibliographicCitationLavaei, J.; Low, S.H. Zero Duality Gap in Optimal Power Flow Problem. IEEE Trans. Power Syst. 2012, 27, 92–107. [CrossRef]spa
dcterms.bibliographicCitationRidha, H.M.; Gomes, C.; Hizam, H. Estimation of photovoltaic module model’s parameters using an improved electromagneticlike algorithm. Neural Comput. Appl. 2020, 32, 12627–12642. [CrossRef]spa
dcterms.bibliographicCitationCalasan, M.; Mujiˇci´c, D.; Rubeži´c, V.; Radulovi´c, M. Estimation of Equivalent Circuit Parameters of Single-Phase Transformer by ´ Using Chaotic Optimization Approach. Energies 2019, 12, 1697. [CrossRef]spa
dcterms.bibliographicCitationCalasan, M.; Micev, M.; Ali, Z.M.; Zobaa, A.F.; Aleem, S.H.E.A. Parameter Estimation of Induction Machine Single-Cage and ´ Double-Cage Models Using a Hybrid Simulated Annealing–Evaporation Rate Water Cycle Algorithm. Mathematics 2020, 8, 1024. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Garces, A. Power flow approximation for DC networks with constant power loads via logarithmic transform of voltage magnitudes. Electr. Power Syst. Res. 2019, 175, 105887. [CrossRef]spa
dcterms.bibliographicCitationMontoya, O.D.; Gil-González, W.; Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Eng. Sci. Technol. Int. J. 2020. [CrossRef]spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2079-9292/10/2/176/htm
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/electronics10020176
dc.subject.keywordsSecond-order cone programmingspa
dc.subject.keywordsPower losses minimizationspa
dc.subject.keywordsOptimal power flow modelspa
dc.subject.keywordsConvex optimizationspa
dc.subject.keywordsPower sourcesspa
dc.subject.keywordsPhotovoltaic generationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.