Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía-Pérez, Andrés
dc.contributor.authorMesa, Jaime
dc.date.accessioned2021-02-16T15:28:04Z
dc.date.available2021-02-16T15:28:04Z
dc.date.issued2020-07
dc.date.submitted2021-02-15
dc.identifier.citationAndrés García-Pérez, Msc1 And Jaime A. Mesa. July 27-31, 2020. “Sustainable Engineering and Internet of Things (IoT): trends and perspectives”, Latin American and Caribbean Consortium of Engineering Institutions, pp. 1–7spa
dc.identifier.isbn978-958-52071-4-1
dc.identifier.issn2414-6390
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10031
dc.description.abstractInternet of Things – IoT appeared in the forecast of engineering three decades ago. Since then, a vast range of applications has been developed in industrial, urban, and rural matters, where one of the most relevant issues has been sustainability. This paper presents a retrospective analysis of the most relevant trends in sustainability regarding IoT and its applications, considering evolution trends and tangible results from the last decade (2011-2020). When the concept of sustainability in engineering gained importance. The study provides useful insights into the future development of IoT in human life and industrial activities as well as research opportunities in terms of sustainability based on IoT approaches.spa
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEngineering, Integration, and Alliances for a Sustainable Development. Hemispheric Cooperation for Competitiveness and Prosperity on a Knowledge-Based Economy: Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education and Technologyspa
dc.titleSustainable engineering and Internet of Things (IoT): Trends and perspectivesspa
dcterms.bibliographicCitationF. Alkhabbas, R. Spalazzese, and P. Davidsson, “Characterizing Internet of Things Systems through Taxonomies: A Systematic Mapping Study,” Internet of Things, vol. 7, p. 100084, 2019, doi: 10.1016/j.iot.2019.100084.spa
dcterms.bibliographicCitationD. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things: Vision, applications and research challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497–1516, 2012, doi: 10.1016/j.adhoc.2012.02.016.spa
dcterms.bibliographicCitationM. Maksimovic, “Greening the Future: Green Internet of Things (GIoT) as a Key Technological Enabler of Sustainable Development,” in Internet of Things and Big Data Analytics Toward NextGeneration Intelligence, Cham: Springer, 2017, pp. 283–331spa
dcterms.bibliographicCitationS. K. Routray and K. P. Sharmila, “Green initiatives in IoT,” Proc. 3rd IEEE Int. Conf. Adv. Electr. Electron. Information, Commun. Bio-Informatics, AEEICB 2017, pp. 454–457, 2017, doi: 10.1109/AEEICB.2017.7972353.spa
dcterms.bibliographicCitationP. K. Khatua, V. K. Ramachandaramurthy, P. Kasinathan, J. Y. Yong, J. Pasupuleti, and A. Rajagopalan, “Application and assessment of internet of things toward the sustainability of energy systems: Challenges and issues,” Sustain. Cities Soc., vol. 53, no. November 2019, p. 101957, 2020, doi: 10.1016/j.scs.2019.101957.spa
dcterms.bibliographicCitationA. Villa-Henriksen, G. T. C. Edwards, L. A. Pesonen, O. Green, and C. A. G. Sørensen, “Internet of Things in arable farming: Implementation, applications, challenges and potential,” Biosyst. Eng., vol. 191, pp. 60–84, 2020, doi: 10.1016/j.biosystemseng.2019.12.013.spa
dcterms.bibliographicCitationM. S. Roopa, S. Pattar, R. Buyya, K. R. Venugopal, S. S. Iyengar, and L. M. Patnaik, “Social Internet of Things (SIoT): Foundations, thrust areas, systematic review and future directions,” Comput. Commun., vol. 139, no. September 2018, pp. 32–57, 2019, doi: 10.1016/j.comcom.2019.03.009.spa
dcterms.bibliographicCitationC. Kotronis et al., “Evaluating Internet of Medical Things (IoMT)- Based Systems from a Human-Centric Perspective,” Internet of Things, vol. 8, p. 100125, 2019, doi: 10.1016/j.iot.2019.100125.spa
dcterms.bibliographicCitationF. Al-Turjman, M. H. Nawaz, and U. D. Ulusar, “Intelligence in the Internet of Medical Things era: A systematic review of current and future trends,” Comput. Commun., vol. 150, no. October 2019, pp. 644–660, 2020, doi: 10.1016/j.comcom.2019.12.030.spa
dcterms.bibliographicCitationY. Bouzembrak, M. Klüche, A. Gavai, and H. J. P. Marvin, “Internet of Things in food safety: Literature review and a bibliometric analysis,” Trends Food Sci. Technol., vol. 94, no. April, pp. 54–64, 2019, doi: 10.1016/j.tifs.2019.11.002.spa
dcterms.bibliographicCitationR. P. Meenaakshi Sundhari and K. Jaikumar, “IoT assisted Hierarchical Computation Strategic Making (HCSM) and Dynamic Stochastic Optimization Technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring,” Comput. Commun., vol. 150, no. November 2019, pp. 226–234, 2020, doi: 10.1016/j.comcom.2019.11.032.spa
dcterms.bibliographicCitationGonzález de-la-Rosa and Pérez-Donsión, “Special Issue ‘Analysis for Power Quality Monitoring,’” Energies, vol. 13, no. 3, p. 514, 2020, doi: 10.3390/en13030514.spa
dcterms.bibliographicCitationK. T. Chui, M. D. Lytras, and A. Visvizi, “Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption,” Energies, vol. 11, no. 11, pp. 1–20, 2018, doi: 10.3390/en11112869.spa
dcterms.bibliographicCitationK. Matsui, “An information provision system to promote energy conservation and maintain indoor comfort in smart homes using sensed data by IoT sensors,” Futur. Gener. Comput. Syst., vol. 82, pp. 388–394, 2018, doi: 10.1016/j.future.2017.10.043.spa
dcterms.bibliographicCitationS. Porru, F. E. Misso, F. E. Pani, and C. Repetto, “Smart mobility and public transport: Opportunities and challenges in rural and urban areas,” J. Traffic Transp. Eng. (English Ed., vol. 7, no. 1, pp. 88–97, 2020, doi: 10.1016/j.jtte.2019.10.002.spa
dcterms.bibliographicCitationS. Liyanage, H. Dia, R. Abduljabbar, and S. A. Bagloee, “Flexible mobility on-demand: An environmental scan,” Sustain., vol. 11, no. 5, 2019, doi: 10.3390/su11051262.spa
dcterms.bibliographicCitationF. Behrendt, “Why cycling matters for Smart Cities. Internet of Bicycles for Intelligent Transport,” J. Transp. Geogr., vol. 56, pp. 157–164, 2016, doi: 10.1016/j.jtrangeo.2016.08.018.spa
dcterms.bibliographicCitationF. Behrendt, “Cycling the smart and sustainable city: Analyzing EC policy documents on internet of things, mobility and transport, and smart cities,” Sustain., vol. 11, no. 3, 2019, doi: 10.3390/su11030763.spa
dcterms.bibliographicCitationS. Poslad, A. Ma, Z. Wang, and H. Mei, “Using a smart city IOT to incentivise and target shifts in mobility behaviour—Is it a piece of pie?,” Sensors (Switzerland), vol. 15, no. 6, pp. 13069–13096, 2015, doi: 10.3390/s150613069.spa
dcterms.bibliographicCitationS. E. Bibri, “The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability,” Sustain. Cities Soc., vol. 38, no. October 2017, pp. 230–253, 2018, doi: 10.1016/j.scs.2017.12.034.spa
dcterms.bibliographicCitationP. Bellavista, C. Giannelli, and R. Zamagna, “The PeRvasive environment sensing and sharing solution,” Sustain., vol. 9, no. 4, pp. 1–17, 2017, doi: 10.3390/su9040585.spa
dcterms.bibliographicCitationB. Mataloto, J. C. Ferreira, and N. Cruz, “Lobems—IoT for building and energy management systems,” Electron., vol. 8, no. 7, 2019, doi: 10.3390/electronics8070763.spa
dcterms.bibliographicCitationD. Sembroiz, D. Careglio, S. Ricciardi, and U. Fiore, “Planning and operational energy optimization solutions for smart buildings,” Inf. Sci. (Ny)., vol. 476, pp. 439–452, 2019, doi: 10.1016/j.ins.2018.06.003.spa
dcterms.bibliographicCitationJ. C. Ferreira, J. A. Afonso, V. Monteiro, and J. L. Afonso, “An energy management platform for public buildings,” Electron., vol. 7, no. 11, pp. 1–13, 2018, doi: 10.3390/electronics7110294.spa
dcterms.bibliographicCitationJ. Han, E. Lee, H. Cho, Y. Yoon, H. Lee, and W. Rhee, “Improving the energy saving process with high-resolution data: A case study in a university building,” Sensors (Switzerland), vol. 18, no. 5, 2018, doi: 10.3390/s18051606.spa
dcterms.bibliographicCitationJ. Pan, R. Jain, S. Paul, T. Vu, A. Saifullah, and M. Sha, “An Internet of Things Framework for Smart Energy in Buildings: Designs, Prototype, and Experiments,” IEEE Internet Things J., vol. 2, no. 6, pp. 527–537, 2015, doi: 10.1109/JIOT.2015.2413397spa
dcterms.bibliographicCitationS. Yadav, D. Garg, and S. Luthra, “Selection of third-party logistics services for internet of things-based agriculture supply chain management,” Int. J. Logist. Syst. Manag., vol. 35, no. 2, p. 204, 2020, doi: 10.1504/ijlsm.2020.104780.spa
dcterms.bibliographicCitationK. A. Brohm, “Key drivers of the implementation of smart technology in the food value chain: Innovation for a sustainable food production,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 8, pp. 462–465, 2019.spa
dcterms.bibliographicCitationA. Telukdarie and P. Dhamija, “The IoT research in sustainable agricultural supply chain management: A conceptual framework,” Int. J. E-entrepreneursh. Innov., vol. 9, no. 2, pp. 1–14, 2019, doi: 10.4018/IJEEI.2019070101.spa
dcterms.bibliographicCitationR. Accorsi, S. Cholette, R. Manzini, and A. Tufano, “A hierarchical data architecture for sustainable food supply chain management and planning,” J. Clean. Prod., vol. 203, pp. 1039–1054, 2018, doi: 10.1016/j.jclepro.2018.08.275.spa
dcterms.bibliographicCitationC. N. Verdouw, R. M. Robbemond, T. Verwaart, J. Wolfert, and A. J. M. Beulens, “A reference architecture for IoT-based logistic information systems in agri-food supply chains,” Enterp. Inf. Syst., vol. 12, no. 7, pp. 755–779, 2018, doi: 10.1080/17517575.2015.1072643.spa
dcterms.bibliographicCitationM. Muñoz, J. D. Gil, L. Roca, F. Rodríguez, and M. Berenguel, “An iot architecture for water resource management in agroindustrial environments: A case study in almería (Spain),” Sensors (Switzerland), vol. 20, no. 3, 2020, doi: 10.3390/s20030596.spa
dcterms.bibliographicCitationC. Kamienski et al., “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi: 10.3390/s19020276.spa
dcterms.bibliographicCitationG. Bressanelli, F. Adrodegari, M. Perona, and N. Saccani, “Exploring how usage-focused business models enable circular economy through digital technologies,” Sustain., vol. 10, no. 3, 2018, doi: 10.3390/su10030639.spa
dcterms.bibliographicCitationF. E. Garcia-Muiña et al., “Identifying the equilibrium point between sustainability goals and circular economy practices in an Industry 4.0 manufacturing context using eco-design,” Soc. Sci., vol. 8, no. 8, 2019, doi: 10.3390/socsci8080241.spa
dcterms.bibliographicCitationF. E. Garcia-Muiña, R. González-Sánchez, A. M. Ferrari, and D. Settembre-Blundo, “The paradigms of Industry 4.0 and circular economy as enabling drivers for the competitiveness of businesses and territories: The case of an Italian ceramic tiles manufacturing company,” Soc. Sci., vol. 7, no. 12, 2018, doi: 10.3390/socsci7120255.spa
dcterms.bibliographicCitationG. Hatzivasilis, K. Fysarakis, O. Soultatos, I. Askoxylakis, I. Papaefstathiou, and G. Demetriou, “The Industrial Internet of Things as an enabler for a Circular Economy Hy-LP: A novel IIoT protocol, evaluated on a wind park’s SDN/NFV-enabled 5G industrial network,” Comput. Commun., vol. 119, no. September 2017, pp. 127–137, 2018, doi: 10.1016/j.comcom.2018.02.007.spa
dcterms.bibliographicCitationM. A. Reuter, “Digitalizing the Circular Economy: Circular Economy Engineering Defined by the Metallurgical Internet of Things,” Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 47, no. 6, pp. 3194–3220, 2016, doi: 10.1007/s11663-016- 0735-5.spa
dcterms.bibliographicCitationK. D. Kang, H. Kang, I. M. S. K. Ilankoon, and C. Y. Chong, “Electronic waste collection systems using Internet of Things (IoT): Household electronic waste management in Malaysia,” J. Clean. Prod., vol. 252, p. 119801, 2020, doi: 10.1016/j.jclepro.2019.119801.spa
dcterms.bibliographicCitationP. Jiang, Y. Van Fan, J. Zhou, M. Zheng, X. Liu, and J. J. Klemeš, “Data-driven analytical framework for waste-dumping behaviour analysis to facilitate policy regulations,” Waste Manag., vol. 103, pp. 285–295, 2020, doi: 10.1016/j.wasman.2019.12.041.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttp://laccei.org/LACCEI2020-VirtualEdition/meta/FP109.html
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.18687/LACCEI2020.1.1.109
dc.subject.keywordsIoTspa
dc.subject.keywordsSustainabilityspa
dc.subject.keywordsEngineeringspa
dc.subject.keywordsSmart citiesspa
dc.subject.keywordsSmart systemsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.