Mostrar el registro sencillo del ítem
Predictive power control for electric vehicle charging applications
dc.contributor.author | Gil-González, Walter | |
dc.contributor.author | Serra, Federico | |
dc.contributor.author | Domínguez Jiménez, Juan Antonio | |
dc.contributor.author | Campillo Jiménez, Javier Eduardo | |
dc.contributor.author | Montoya, Oscar | |
dc.date.accessioned | 2021-02-16T15:08:04Z | |
dc.date.available | 2021-02-16T15:08:04Z | |
dc.date.issued | 2020-12-01 | |
dc.date.submitted | 2021-02-12 | |
dc.identifier.citation | Citation & Abstract W. Gil-González, F. Serra, J. Dominguez, J. Campillo and O. Montoya, "Predictive Power Control for Electric Vehicle Charging Applications," 2020 IEEE ANDESCON, Quito, Ecuador, 2020, pp. 1-6, doi: 10.1109/ANDESCON50619.2020.9272192. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10024 | |
dc.description.abstract | This paper presents a direct predictive power control (DPPC) design for vehicle charging applications. The proposed control design allows working in the Park's reference frame avoiding the usage of the phase-lock loops, which help increasing the reliability of the system. Direct power control allows defining active and reactive power references as function of the control objectives independently. In the case of the active, it is defined as function of the battery current or state-of-charge desired profiles, while reactive power can be projected as function of the grid requirements. Numerical results show that the proposed DPPC allows controlling active and reactive power regardless with minimum steady-state errors (e r ≤ 1%); in addition, the state-of-charge and the battery currents are controlled to evidence the applicability of the proposed DPPC design for tracking different desired references. All the numerical test are performed in MATLAB/simulink. | spa |
dc.format.extent | 6 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.source | 2020 IEEE ANDESCON | spa |
dc.title | Predictive power control for electric vehicle charging applications | spa |
dcterms.bibliographicCitation | A. Di Giorgio, F. Liberati and S. Canale, "Electric vehicles charging control in a smart grid: A model predictive control approach", Control Engineering Practice, vol. 22, pp. 147-162, 2014. | spa |
dcterms.bibliographicCitation | A. Gusrialdi, Z. Qu and M. A. Simaan, "Scheduling and cooperative control of electric vehicles’ charging at highway service stations", 53rd IEEE Conference on Decision and Control, pp. 6465-6471, 2014. | spa |
dcterms.bibliographicCitation | M. Yilmaz and P. T. Krein, "Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces", IEEE Trans. Power Electron, vol. 28, no. 12, pp. 5673-5689, 2013. | spa |
dcterms.bibliographicCitation | L. M. Fernández, F. Serra, C. D. Angelo and O. Montoya, "Control of a charging station for electric vehicles", J. Phys. Conf. Ser, vol. 1448, pp. 012013, jan 2020. | spa |
dcterms.bibliographicCitation | F. M. Serra and C. H. De Angelo, "IDA-PBC control of a single-phase battery charger for electric vehicles with unity power factor", 2016 IEEE Conference on Control Applications (CCA), pp. 261-266, 2016. | spa |
dcterms.bibliographicCitation | S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, "Grid-Connected Integrated Battery Chargers in Vehicle Applications: Review and New Solution", IEEE Trans. Ind. Electron, vol. 60, no. 2, pp. 459-473, 2013. | spa |
dcterms.bibliographicCitation | O. D. Montoya, W. J. Gil-González, A. Garcés, A. Escobar and L. F. Grisales-Noreña, "Nonlinear Control for Battery Energy Storage Systems in Power Grids", 2018 IEEE Green Technologies Conference (GreenTech), pp. 65-70, 2018. | spa |
dcterms.bibliographicCitation | A. W. Danté, K. Agbossou, S. Kelouwani, A. Cardenas and J. Bouchard, "Online modeling and identification of plug-in electric vehicles sharing a residential station", International Journal of Electrical Power & Energy Systems, vol. 108, pp. 162-176, 2019. | spa |
dcterms.bibliographicCitation | W. Gil-González, O. D. Montoya and A. Garces, "Direct power control of electrical energy storage systems: A passivity-based PI approach", Electr. Power Syst. Res, vol. 175, pp. 105885, 2019, [online] Available: http://www.sciencedirect.com/science/article/pii/S0378779619302044. | spa |
dcterms.bibliographicCitation | W. Gil-González, O. D. Montoya and A. Garces, "Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach", International Journal of Electrical Power & Energy Systems, vol. 110, pp. 588-597, 2019. | spa |
dcterms.bibliographicCitation | W. Gil-González, F. M. Serra, O. D. Montoya, C. A. Ramírez and C. Orozco-Henao, "Direct Power Compensation in AC Distribution Networks with SCES Systems via PI-PBC Approach", Symmetry, vol. 12, no. 4, pp. 666, apr 2020. | spa |
dcterms.bibliographicCitation | W. Gil, O. D. Montoya, A. Garces et al., "Direct power control of electrical energy storage systems: A passivity-based PI approach", Electric Power Systems Research, vol. 175, pp. 105885, 2019. | spa |
dcterms.bibliographicCitation | M. Zoghlami and F. Bacha, "Implementation of different strategies of direct power control", IREC2015 The Sixth International Renewable Energy Congress, pp. 1-6, 2015. | spa |
dcterms.bibliographicCitation | J. Rodriguez and P. Cortes, Predictive control of power converters and electrical drives, John Wiley & Sons, vol. 40, 2012. | spa |
dcterms.bibliographicCitation | L. Wang, S. Chai, D. Yoo, L. Gan and K. Ng, PID and predictive control of electrical drives and power converters using MATLAB/Simulink, John Wiley & Sons, 2015. | spa |
datacite.rights | http://purl.org/coar/access_right/c_14cb | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://ieeexplore.ieee.org/document/9272192 | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1109/ANDESCON50619.2020.9272192 | |
dc.subject.keywords | Direct predictive power control | spa |
dc.subject.keywords | Active and reactive power management | spa |
dc.subject.keywords | Discrete control design | spa |
dc.subject.keywords | Electric vehicle charging applications | spa |
dc.subject.keywords | Voltage source converters | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_8544 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.