Mostrar el registro sencillo del ítem

dc.contributor.authorRodriguez-Cabal, M A
dc.contributor.authorArias Londoño, A
dc.contributor.authorArdila-Marin, J G
dc.contributor.authorGrisales-Noreña L.F.
dc.contributor.authorCastro-Vargas, A
dc.date.accessioned2021-02-15T16:18:38Z
dc.date.available2021-02-15T16:18:38Z
dc.date.issued2020
dc.date.submitted2021-02-12
dc.identifier.citationM A Rodriguez-Cabal et al 2020 J. Phys.: Conf. Ser. 1671 01201spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10001
dc.description.abstractHeat exchangers are widely used in the industry to allow the heat transfer between two fluids. For that reason, correctly sizing said devices poses a design problem in order to guarantee the efficiency and appropriate conditions of the equipment and the processes. In this paper, the geometry of a spiral-plate heat exchanger is optimized by means of a particle swarm optimization algorithm, whose objective function is the maximization of the overall heat transfer coefficient. The process variables considered in the model were channel spacing, spiral length, spiral width, and wall thickness. The mathematical model and the particle swarm optimization were programmed in Matlab®, where the parameters and the constraints were defined, limiting the pressure drop and guaranteeing the heat transfer required for a study case taken from Minton's work. In this study, the overall heat transfer coefficient was increased by 12.73% in comparison with the original design.spa
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Physics: Conference Series 1671 (2020) 012012spa
dc.titleOverall heat transfer coefficient optimization in a spiral-plate heat exchangerspa
dcterms.bibliographicCitationÇengel Y, Boles M 2006 Thermodynamics an Engineering Approach 8th Edition (New York: McGraw Hill)spa
dcterms.bibliographicCitationAzad A V, Amidpour M 2011 Economic optimization of shell and tube heat exchanger based on constructal theory Energy 36(2) 1087–1096spa
dcterms.bibliographicCitationIncropera F P, DeWitt D P 2009 Fundamentos de la Transferencia de Calor 4 Edition (México: Prentice Hall)spa
dcterms.bibliographicCitationGallego R A, Escobar A H, Toro E M 2008 Técnicas Metaheurísticas de Optimización 2nd Edition (Pereira: Universidad Tecnológica de Pereira)spa
dcterms.bibliographicCitationFettaka S, Thibault J, Gupta Y 2013 Design of shell-and-tube heat exchangers using multiobjective optimization Int. J. Heat Mass Transf. 60(1) 343–354spa
dcterms.bibliographicCitationSegundo E, Mariani V, Coelho L 2015 Spiral heat exchanger optimization using wind driven algorithm XII Simpósio Brasileiro de Automação Inteligente (XII SBAI) (Natal: Universidade Federal do Rio Grande do Norte)spa
dcterms.bibliographicCitationPatel V K, Rao R V 2010 Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique Appl. Therm. Eng. 30(11–12) 1417–1425spa
dcterms.bibliographicCitationLord Minton R C, Slusser R P 1970 Design of heat exchangers Chem. Eng. 77(2) 96-118spa
dcterms.bibliographicCitationVasconcelos Segundo E H, Mariani V C, dos Santos Coelho L 2018 Design of spiral heat exchanger from economic and thermal point of view using a tuned wind-driven optimizer J. Brazilian Soc. Mech. Sci. Eng. 40(4) 212spa
dcterms.bibliographicCitationPerry S, Perry R, Green D, Maloney J 1997 Perry’s Chemical Engineers’ Handbook 7th Edition (New York: McGraw-Hill)spa
dcterms.bibliographicCitationKennedy J, Eberhart R 1995 Particle swarm optimization Neural Networks Proceedings of ICNN'95- International Conference on Neural Networks (Australia: IEEE)spa
dcterms.bibliographicCitationMoraes A O S, Mitre J F, Lage P L C, Secchi A R 2015 A robust parallel algorithm of the particle swarm optimization method for large dimensional engineering problems Appl. Math. Model. 39(14) 4223–4241spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012012
dc.type.driverinfo:eu-repo/semantics/lecturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1088/1742-6596/1671/1/012012
dc.subject.keywordsEntropyspa
dc.subject.keywordsHeat transferspa
dc.subject.keywordsEnergyspa
dc.subject.keywordsEntransyspa
dc.subject.keywordsEntropyspa
dc.subject.keywordsSpiral plate heat exchangersspa
dc.subject.keywordsSpiral turnsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_8544spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_c94fspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.