Mostrar el registro sencillo del ítem
Overall heat transfer coefficient optimization in a spiral-plate heat exchanger
dc.contributor.author | Rodriguez-Cabal, M A | |
dc.contributor.author | Arias Londoño, A | |
dc.contributor.author | Ardila-Marin, J G | |
dc.contributor.author | Grisales-Noreña L.F. | |
dc.contributor.author | Castro-Vargas, A | |
dc.date.accessioned | 2021-02-15T16:18:38Z | |
dc.date.available | 2021-02-15T16:18:38Z | |
dc.date.issued | 2020 | |
dc.date.submitted | 2021-02-12 | |
dc.identifier.citation | M A Rodriguez-Cabal et al 2020 J. Phys.: Conf. Ser. 1671 01201 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10001 | |
dc.description.abstract | Heat exchangers are widely used in the industry to allow the heat transfer between two fluids. For that reason, correctly sizing said devices poses a design problem in order to guarantee the efficiency and appropriate conditions of the equipment and the processes. In this paper, the geometry of a spiral-plate heat exchanger is optimized by means of a particle swarm optimization algorithm, whose objective function is the maximization of the overall heat transfer coefficient. The process variables considered in the model were channel spacing, spiral length, spiral width, and wall thickness. The mathematical model and the particle swarm optimization were programmed in Matlab®, where the parameters and the constraints were defined, limiting the pressure drop and guaranteeing the heat transfer required for a study case taken from Minton's work. In this study, the overall heat transfer coefficient was increased by 12.73% in comparison with the original design. | spa |
dc.format.extent | 7 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Physics: Conference Series 1671 (2020) 012012 | spa |
dc.title | Overall heat transfer coefficient optimization in a spiral-plate heat exchanger | spa |
dcterms.bibliographicCitation | Çengel Y, Boles M 2006 Thermodynamics an Engineering Approach 8th Edition (New York: McGraw Hill) | spa |
dcterms.bibliographicCitation | Azad A V, Amidpour M 2011 Economic optimization of shell and tube heat exchanger based on constructal theory Energy 36(2) 1087–1096 | spa |
dcterms.bibliographicCitation | Incropera F P, DeWitt D P 2009 Fundamentos de la Transferencia de Calor 4 Edition (México: Prentice Hall) | spa |
dcterms.bibliographicCitation | Gallego R A, Escobar A H, Toro E M 2008 Técnicas Metaheurísticas de Optimización 2nd Edition (Pereira: Universidad Tecnológica de Pereira) | spa |
dcterms.bibliographicCitation | Fettaka S, Thibault J, Gupta Y 2013 Design of shell-and-tube heat exchangers using multiobjective optimization Int. J. Heat Mass Transf. 60(1) 343–354 | spa |
dcterms.bibliographicCitation | Segundo E, Mariani V, Coelho L 2015 Spiral heat exchanger optimization using wind driven algorithm XII Simpósio Brasileiro de Automação Inteligente (XII SBAI) (Natal: Universidade Federal do Rio Grande do Norte) | spa |
dcterms.bibliographicCitation | Patel V K, Rao R V 2010 Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique Appl. Therm. Eng. 30(11–12) 1417–1425 | spa |
dcterms.bibliographicCitation | Lord Minton R C, Slusser R P 1970 Design of heat exchangers Chem. Eng. 77(2) 96-118 | spa |
dcterms.bibliographicCitation | Vasconcelos Segundo E H, Mariani V C, dos Santos Coelho L 2018 Design of spiral heat exchanger from economic and thermal point of view using a tuned wind-driven optimizer J. Brazilian Soc. Mech. Sci. Eng. 40(4) 212 | spa |
dcterms.bibliographicCitation | Perry S, Perry R, Green D, Maloney J 1997 Perry’s Chemical Engineers’ Handbook 7th Edition (New York: McGraw-Hill) | spa |
dcterms.bibliographicCitation | Kennedy J, Eberhart R 1995 Particle swarm optimization Neural Networks Proceedings of ICNN'95- International Conference on Neural Networks (Australia: IEEE) | spa |
dcterms.bibliographicCitation | Moraes A O S, Mitre J F, Lage P L C, Secchi A R 2015 A robust parallel algorithm of the particle swarm optimization method for large dimensional engineering problems Appl. Math. Model. 39(14) 4223–4241 | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://iopscience.iop.org/article/10.1088/1742-6596/1671/1/012012 | |
dc.type.driver | info:eu-repo/semantics/lecture | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1088/1742-6596/1671/1/012012 | |
dc.subject.keywords | Entropy | spa |
dc.subject.keywords | Heat transfer | spa |
dc.subject.keywords | Energy | spa |
dc.subject.keywords | Entransy | spa |
dc.subject.keywords | Entropy | spa |
dc.subject.keywords | Spiral plate heat exchangers | spa |
dc.subject.keywords | Spiral turns | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_8544 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_c94f | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.