Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorGil-González, Walter
dc.date.accessioned2020-11-04T20:32:31Z
dc.date.available2020-11-04T20:32:31Z
dc.date.issued2019-07
dc.date.submitted2020-10-30
dc.identifier.citationMontoya Giraldo, Oscar & Grisales-Noreña, Luis & Gil González, Walter. (2019). Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. Circuits and Systems II: Express Briefs, IEEE Transactions on. PP. 10.1109/TCSII.2019.2927290.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9533
dc.description.abstractThis brief briefly addresses the problem of power flow solution for direct-current (dc) networks with radial configuration and constant power loads (CPLs). It proposes a novel iterative method based on the upper triangular relationship between nodal and branch currents, it also uses a primitive impedance matrix. The main advantage of this method lies in the possibility of avoiding inversions of non-diagonal matrices, which allows its convergence to be improved in terms of the number of iterations and processing times required in comparison to classical admittance-based methods. Three different radial dc resistive networks composed by 21, 33, and 69 nodes are employed to validate the effectiveness of the proposed power flow solution method. For comparison purposes, the Newton-Raphson method, and also successive approximations and Taylor-based approaches are implemented. All simulations have performed in MATLAB software.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceIEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 6, June 2020)spa
dc.titleTriangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLsspa
dcterms.bibliographicCitationO. D. Montoya, "On linear analysis of the power flow equations for DC and AC grids with CPLs", IEEE Trans. Circuits Syst. II Exp. Briefs.
dcterms.bibliographicCitationJ. W. Simpson-Porco, F. Dörfler and F. Bullo, "On resistive networks of constant-power devices", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 62, no. 8, pp. 811-815, Aug. 2015.
dcterms.bibliographicCitationD. K. Molzahn, "Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 65, no. 5, pp. 672-676, May 2018.
dcterms.bibliographicCitationA. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids", Elect. Power Syst. Res., vol. 151, pp. 149-153, Oct. 2017.
dcterms.bibliographicCitationJ. Grainger and W. Stevenson, Power System Analysis, New York, NY, USA:McGraw-Hill, 1994.
dcterms.bibliographicCitationC. N. Papadimitriou, E. I. Zountouridou and N. D. Hatziargyriou, "Review of hierarchical control in DC microgrids", Elect. Power Syst. Res., vol. 122, pp. 159-167, May 2015.
dcterms.bibliographicCitationS. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State of the art in research on microgrids: A review", IEEE Access, vol. 3, pp. 890-925, 2015.
dcterms.bibliographicCitationA. Garcés, "On the convergence of Newton’s method in power flow studies for DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5770-5777, Sep. 2018.
dcterms.bibliographicCitationO. D. Montoya, L. F. Grisales-Noreña, D. González-Montoya, C. A. Ramos-Paja and A. Garces, "Linear power flow formulation for low-voltage DC power grids", Elect. Power Syst. Res., vol. 163, pp. 375-381, Oct. 2018.
dcterms.bibliographicCitationO. D. Montoya, V. M. Garrido, W. Gil-González and L. Grisales-Noreña, "Power flow analysis in DC grids: Two alternative numerical methods", IEEE Trans. Circuits Syst. II Exp. Briefs.
dcterms.bibliographicCitationW. Gil-González, O. D. Montoya, A. Garcés and A. Escobar-Mejía, "Supervisory LMI-based state-feedback control for current source power conditioning of SMES", Proc. 9th Annu. IEEE Green Technol. Conf. (GreenTech), pp. 145-150, Mar. 2017.
dcterms.bibliographicCitationA. Garces, D. Montoya and R. Torres, "Optimal power flow in multiterminal HVDC systems considering DC/DC converters", Proc. IEEE 25th Int. Symp. Ind. Electron. (ISIE), pp. 1212-1217, Jun. 2016.
dcterms.bibliographicCitationJ. Li, F. Liu, Z. Wang, S. H. Low and S. Mei, "Optimal power flow in stand-alone DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496-5506, Sep. 2018.
dcterms.bibliographicCitationO. D. Montoya, "Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 4, pp. 642-646, Apr. 2019.
dcterms.bibliographicCitationP. Aravindhababu, S. Ganapathy and K. R. Nayar, "A novel technique for the analysis of radial distribution systems", Int. J. Elect. Power Energy Syst., vol. 23, no. 3, pp. 167-171, 2001.
dcterms.bibliographicCitationP. M. D. O.-D. Jesus, M. A. Alvarez and J. M. Yusta, "Distribution power flow method based on a real quasi-symmetric matrix", Elect. Power Syst. Res., vol. 95, pp. 148-159, Feb. 2013.
dcterms.bibliographicCitationA. Marini, S. S. Mortazavi, L. Piegari and M.-S. Ghazizadeh, "An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations", Elect. Power Syst. Res., vol. 170, pp. 229-243, May 2019.
dcterms.bibliographicCitationT. Shen, Y. Li and J. Xiang, "A graph-based power flow method for balanced distribution systems", Energies, vol. 11, no. 3, pp. 511, Feb. 2018.
dcterms.bibliographicCitationO. D. Montoya, W. Gil-González and A. Garces, "Optimal power flow on DC microgrids: A quadratic convex approximation", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 6, pp. 1018-1022, Jun. 2019.
dcterms.bibliographicCitationL. F. Grisales-Noreña, D. Gonzalez-Montoya and C. A. Ramos-Paja, "Optimal sizing and location of distributed generators based on PBIL and PSO techniques", Energies, vol. 11, no. 4, pp. 1-27, Feb. 2018.
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://ieeexplore.ieee.org/document/8756198
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1109/TCSII.2019.2927290
dc.subject.keywordsDirect-currentspa
dc.subject.keywordsRadial distribution networksspa
dc.subject.keywordsNumerical methodsspa
dc.subject.keywordsPower flow methodspa
dc.subject.keywordsPrimitive impedance matrixspa
dc.subject.keywordsTriangular matrixspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.