Mostrar el registro sencillo del ítem

dc.contributor.authorFuertes Miquel, Vicente S.
dc.contributor.authorCoronado Hernández, Óscar Enrique
dc.contributor.authorPonz-Carcelén Roman
dc.contributor.otherRomero, Guillermo
dc.contributor.otherPonz-Carcelén, Román
dc.contributor.otherBiel-Sanchis, Francisco
dc.date.accessioned2020-10-29T21:25:24Z
dc.date.available2020-10-29T21:25:24Z
dc.date.issued2020-04-13
dc.date.submitted2020-10-28
dc.identifier.citationGuillermo Romero, Vicente S. Fuertes-Miquel, Óscar E. Coronado-Hernández, Román Ponz-Carcelén & Francisco Biel-Sanchis (2020) Analysis of hydraulic transients during pipeline filling processes with air valves in large-scale installations, Urban Water Journal, 17:6, 568-575, DOI: 10.1080/1573062X.2020.1800762spa
dc.identifier.issn1573-062X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9503
dc.description.abstractDuring the filling process in pressurized hydraulic systems, sudden pressure changes generated inside the pipes can cause significant damage. To avoid these excessive overpressures, air valves should be installed to allow air exchange between the inside and outside during the filling process. This study presents a mathematical model to analyse the hydraulic transients during filling processes. This model, which has already been validated in small laboratories, is now applied to real large-scale systems that consist of DN400 and DN600 pipelines from Empresa Mixta Metropolitana S.A (EMIMET – Group Global Omnium), which is the company that manages the water supply of the metropolitan area of Valencia (from the Drinking Water Treatment Station to the municipalities). The mathematical model for large pipes is validated by comparing the experimental measurements and the results of model.spa
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.sourceUrban Water Journal Volume 17, 2020 - Issue 6spa
dc.titleAnalysis of hydraulic transients during pipeline filling processes with air valves in large-scale installationsspa
dcterms.bibliographicCitationAbreu, J. , E.Cabrera, J.Izquierdo, and J.García-Serra . 1999. “Flow Modeling in Pressurized Systems Revisited.” Journal of Hydraulic Engineering 125 (11): 1154–1169. doi:10.1061/(ASCE)0733-9429(1999)125:11(1154).spa
dcterms.bibliographicCitationApollonio, C. , G.Balacco, N.Fontana, M.Giugni, G.Marini, and A. F.Piccinni . 2016. “Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines.” Water 8 (1): 25. doi:10.3390/w8010025.spa
dcterms.bibliographicCitationAWWA . 2001. American Water Works Association (AWWA). Manual of Water Supply Practices - M51: Air-Release, Air-Vacuum, and Combination Air Valves . 1st ed. Denver, CO: Denver.spa
dcterms.bibliographicCitationBalacco, G. , C.Apollonio, and A. F.Piccinni . 2015. “Experimental Analysis of Air Valve Behaviour during Hydraulic Transients.” Journal of Applied Water Engineering and Research 3 (1): 3–11. doi:10.1080/23249676.2015.1032374.spa
dcterms.bibliographicCitationBalacco, G. , N.Fontana, C.Apollonio, M.Giugni, G.Marini, and A. F.Piccinni . 2018. “Pressure Surges during Filling of Partially Empty Undulating Pipelines.” ISH Journal of Hydraulic Engineering 1 (9). doi:10.1080/09715010.2018.1548309.spa
dcterms.bibliographicCitationBesharat, M. , R.Tarinejad, M. T.Aalami, and H. M.Ramos . 2016. “Study of a Compressed Air Vessel for Controlling the Pressure Surge in Water Networks: CFD and Experimental Analysis.” Water Resources Management 30 (8): 2687–2702. doi:10.1007/s11269-016-1310-1.spa
dcterms.bibliographicCitationChaudhry, M. H. 2014. Applied Hydraulic Transients. Columbia . SC, USA: Springer.spa
dcterms.bibliographicCitationCoronado-Hernández, O. E. , M.Besharat, V. S.Fuertes-Miquel, and H. M.Ramos . 2019. “Effect of a Commercial Air Valve on the Rapid Filling of a Single Pipeline: A Numerical and Experimental Analysis.” Water 11 (9): 1814.spa
dcterms.bibliographicCitationCoronado-Hernández, O. E. , V. S.Fuertes-Miquel, M.Besharat, and H. M.Ramos . 2018. “Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket.” Urban Water Journal 15 (4): 346–352. doi:10.1080/1573062X.2018.1475578.spa
dcterms.bibliographicCitationFuertes-Miquel, V. S. 2001. “Hydraulic Transients with Entrapped Air Pockets.” PhD diss., Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain.spa
dcterms.bibliographicCitationFuertes-Miquel, V. S. , O. E.Coronado-Hernández, P. L.Iglesias-Rey, and D.Mora-Meliá . 2019b. “Transient Phenomena during the Emptying Process of a Single Pipe with Water-air Interaction.” Journal of Hydraulic Research 57 (3): 318–326. doi:10.1080/00221686.2018.1492465.spa
dcterms.bibliographicCitationFuertes-Miquel, V. S. , O. E.Coronado-Hernández, D.Mora-Meliá, and P. L.Iglesias-Rey . 2019a. “Hydraulic Modelling during Filling and Emptying Processes in Pressurized Pipelines: A Literature Review.” Urban Water Journal 16 (4): 299–311. doi:10.1080/1573062X.2019.1669188.spa
dcterms.bibliographicCitationGarcía-Todolí, S. , P. L.Iglesias-Rey, D.Mora-Meliá, F. J.Martínez-Solano, and V. S.Fuertes-Miquel . 2018. “Computational Determination of Air Valves Capacity Using CFD Techniques.” Water 10 (10): 1433. doi:10.3390/w10101433.spa
dcterms.bibliographicCitationHou, Q. , A.Tijsseling, J.Laanearu, I.Annus, T.Koppel, A.Bergant, S.Vuković, A.Anderson, and J.Van’tWestende . 2014. “Experimental Investigation on Rapid Filling of a Large-scale Pipeline.” Journal of Hydraulic Engineering 140 (11): 04014053. doi:10.1061/(ASCE)HY.1943-7900.0000914.spa
dcterms.bibliographicCitationIzquierdo, J. , V. S.Fuertes, E.Cabrera, P. L.Iglesias, and J.García-Serra . 1999. “Pipeline Start-up with Entrapped Air.” Journal of Hydraulic Research 37 (5): 579–590. doi:10.1080/00221689909498518.spa
dcterms.bibliographicCitationLaanearu, J. , I.Annus, T.Koppel, A.Bergant, S.Vučković, Q.Hou, A. S.Tijsseling, A.Anderson, and J. M. C.Van’t Westende . 2012. “Emptying of Large-scale Pipeline by Pressurized Air.” Journal of Hydraulic Engineering 138 (12): 1090–1100. doi:10.1061/(ASCE)HY.1943-7900.0000631.spa
dcterms.bibliographicCitationLeon, A. , M.Ghidaoui, A.Schmidt, and M.Garcia . 2010. “A Robust Two-equation Model for Transient-mixed Flows.” Journal of Hydraulic Research 48 (1): 44–56. doi:10.1080/00221680903565911.spa
dcterms.bibliographicCitationLiou, C. , and W. A.Hunt . 1996. “Filling of Pipelines with Undulating Elevation Profiles.” Journal of Hydraulic Engineering 122 (10): 534–539. doi:10.1061/(ASCE)0733-9429(1996)122:10(534).spa
dcterms.bibliographicCitationMalekpour, A. , and B. W.Karney . 2019. “Complex Interactions of Water, Air and Its Controlled Removal during Pipeline Filling Operations.” Fluid Mechanics Research International Journal 3 (1): 4‒15.spa
dcterms.bibliographicCitationMalekpour, A. , B. W.Karney, and J.Nault . 2016. “Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach.” Journal of Hydraulic Engineering 142 (2): 04015044. doi:10.1061/(ASCE)HY.1943-7900.0001067.spa
dcterms.bibliographicCitationMartins, N. M. C. , J. N.Delgado, H. M.Ramos, and D. I. C.Covas . 2017. “Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model.” Journal of Hydraulic Research 55 (4): 1–14. doi:10.1080/00221686.2016.1275046.spa
dcterms.bibliographicCitationMartins, S. C. , H. M.Ramos, and A. B.Almeida . 2015. “Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems.” Journal of Hydraulic Research 53 (5): 678–686. doi:10.1080/00221686.2015.1077353.spa
dcterms.bibliographicCitationRamezani, L. , B.Karney, and A.Malekpour . 2015. “The Challenge of Air Valves: A Selective Critical Literature Review.” Journal of Water Resources Planning and Management 141 (10): 04015017. doi:10.1061/(ASCE)WR.1943-5452.0000530.spa
dcterms.bibliographicCitationRamezani, L. , B.Karney, and A.Malekpour . 2016. “Encouraging Effective Air Management in Water Pipelines: A Critical Review.” Journal of Water Resources Planning and Management 142 (12): 04016055. doi:10.1061/(ASCE)WR.1943-5452.0000695.spa
dcterms.bibliographicCitationSaemi, S. , M.Raisee, M. J.Cervantes, and A.Nourbakhsh . 2019. “Computation of Two- and Three-dimensional Water Hammer Flows.” Journal of Hydraulic Research 57 (3): 386–404. doi:10.1080/00221686.2018.1459892.spa
dcterms.bibliographicCitationTijsseling, A. , Q.Hou, Z.Bozkuş, and J.Laanearu . 2016. “Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines.” Journal of Pressure Vessel Technology 138 (3): 031301. doi:10.1115/1.4031508.spa
dcterms.bibliographicCitationTran, P. 2017. “Pressure Transients Caused by Air-valve Closure while Filling Pipelines.” Journal of Hydraulic Engineering 143 (2): 04016082. doi:10.1061/(ASCE)HY.1943-7900.0001245.spa
dcterms.bibliographicCitationTrindade, B. C. , and J. G.Vasconcelos . 2013. “Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions.” Journal of Hydraulic. Engineering 139 (9): 921–934. doi:10.1061/(ASCE)HY.1943-7900.0000757.spa
dcterms.bibliographicCitationVasconcelos, J. G. , and S. J.Wright . 2008. “Rapid Flow Startup in Filled Horizontal Pipelines.” Journal of Hydraulic Engineering 134 (7): 984–992. doi:10.1061/(ASCE)0733-9429(2008)134:7(984).spa
dcterms.bibliographicCitationWang, L. , F.Wang, B.Karney, and A.Malekpour . 2017. “Numerical Investigation of Rapid Filling in Bypass Pipelines.” Journal of Hydraulic Research 55 (5): 647–656. doi:10.1080/00221686.2017.1300193.spa
dcterms.bibliographicCitationWylie, E. , and V.Streeter . 1993. Fluid Transients in Systems . Englewood Cliffs, NJ: Ed. Prentice Hall.spa
dcterms.bibliographicCitationZhou, F. , M.Hicks, and P. M.Steffler . 2002. “Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air.” Journal of Hydraulic Engineering 128 (6): 625–634. doi:10.1061/(ASCE)0733-9429(2002)128:6(625).spa
dcterms.bibliographicCitationZhou, L. , and D.Liu . 2013b. “Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe.” Journal of Hydraulic Research 51 (4): 469–474. doi:10.1080/00221686.2013.785985.spa
dcterms.bibliographicCitationZhou, L. , D.Liu, and B.Karney . 2013a. “Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pocket.” Journal of Hydraulic Engineering 139 (10): 1041–1051. doi:10.1061/(ASCE)HY.1943-7900.0000765.spa
dcterms.bibliographicCitationZhou, L. , D.Liu, B.Karney, and Q.Zhang . 2011. “Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines.” Journal of Hydraulic Engineering 137 (12): 1686–1692. doi:10.1061/(ASCE)HY.1943-7900.0000460.spa
dcterms.bibliographicCitationZhou, L. , D.Liu, and C.Ou . 2011. “Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model.” Engineering Applications of Computational Fluid Mechanics 5 (1): 127–140. doi:10.1080/19942060.2011.11015357.spa
datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.tandfonline.com/doi/abs/10.1080/1573062X.2020.1800762
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1080/1573062X.2020.1800762
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spaArtículospa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Civilspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.