Mostrar el registro sencillo del ítem

dc.contributor.editorHarding K.G.
dc.contributor.editorZhang, Song
dc.creatorMarrugo A.G.
dc.creatorRomero L.A.
dc.creatorMeneses J.
dc.date.accessioned2020-03-26T16:33:08Z
dc.date.available2020-03-26T16:33:08Z
dc.date.issued2019
dc.identifier.citationProceedings of SPIE - The International Society for Optical Engineering; Vol. 10991
dc.identifier.isbn9781510626478
dc.identifier.issn0277786X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9179
dc.description.abstractAccurate 3D imaging of human skin features with structured light methods is hindered by subsurface scattering, the presence of hairs and patient movement. In this work, we propose a wide-field 3D imaging system capable of reconstructing large areas, e.g. the whole surface of the forearm, with an axial accuracy in the order of 10 microns for measuring scattered skin features, like lesions. By pushing the limits of grating projection we obtain high-quality fringes within a limited depth of field. We use a second projector for accurate positioning of the object. With two or more cameras we achieve independent 3D reconstructions automatically merged in a global coordinate system. With the positioning strategy, we acquire two consecutive images for absolute phase retrieval using Fourier Transform Profilometry to ensure accurate phase-to-height mapping. Encouraging experimental results show that the system is able to measure precisely skin features scattered in a large area. Copyright © 2019 SPIE.eng
dc.description.sponsorshipUniversidad Tecnológica de Pereira, UTP: C2018P018, C2018P005 Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS 538871552485
dc.description.sponsorshipThe Society of Photo-Optical Instrumentation Engineers (SPIE)
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSPIE
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85072556655&doi=10.1117%2f12.2518649&partnerID=40&md5=19ea4262ce9031a72dca64ee179a8509
dc.sourceScopus2-s2.0-85072556655
dc.titleWide-field 3D imaging with an LED pattern projector for accurate skin feature measurements via Fourier transform profilometry
dcterms.bibliographicCitationRodríguez-Quiñonez, J.C., Sergiyenko, O.Y., Preciado, L.C.B., Tyrsa, V.V., Gurko, A.G., Podrygalo, M.A., Lopez, M.R., Balbuena, D.H., Optical monitoring of scoliosis by 3D medical laser scanner (2014) Optics and Lasers in Engineering, 54, pp. 175-186
dcterms.bibliographicCitationNovak, B., Babnik, A., Možina, J., Jezeršek, M., Three-dimensional foot scanning system with a rotational laser-based measuring head (2014) Strojniški Vestnik - Journal of Mechanical Engineering, 60 (11), pp. 685-693
dcterms.bibliographicCitationCasas, L., Treuillet, S., Valencia, B., Llanos, A., Castañeda, B., Low-cost uncalibrated video-based tool for tridimensional reconstruction oriented to assessment of chronic wounds (2015) Tenth International Symposium on Medical Information Processing and Analysis, pp. 928711-928718. , Romero, E. and Lepore, N., eds., SPIE
dcterms.bibliographicCitationBleve, M., Capra, P., Pavanetto, F., Perugini, P., Ultrasound and 3D skin imaging: Methods to evaluate efficacy of striae distensae treatment (2012) Dermatology Research and Practice, 2012 (7), pp. 673706-673710
dcterms.bibliographicCitationQuang, T.T., Kim, H.-Y., Bao, F.S., Papay, F.A., Edwards, W.B., Liu, Y., Fluorescence imaging topography scanning system for intraoperative multimodal imaging (2017) PLoS ONE, 12 (4)
dcterms.bibliographicCitationRosén, B.-G., Blunt, L., Thomas, T.R., On in-vivo skin topography metrology and replication techniques (2005) Journal of Physics: Conference Series, 13, pp. 325-329
dcterms.bibliographicCitationAres, M., Royo, S., Vilaseca, M., Herrera, J.A., Delpueyo, X., Sanabria, F., Handheld 3D scanning system for In-vivo imaging of skin cancer (2014) 5th International Conference on 3D Body Scanning Technologies, Lugano, Switzerland, 21-22 October 2014, pp. 231-236. , Hometrica Consulting - Dr. Nicola D'Apuzzo, Ascona, Switzerland
dcterms.bibliographicCitationKottner, J., Schario, M., Garcia Bartels, N., Pantchechnikova, E., Hillmann, K., Blume-Peytavi, U., Comparison of two in vivo measurements for skin surface topography (2013) Skin Research and Technology, 19 (2), pp. 84-90
dcterms.bibliographicCitationLi, B., Zhang, S., Microscopic structured light 3D profilometry: Binary defocusing technique vs. sinusoidal fringe projection (2017) Optics and Lasers in Engineering, 96, pp. 117-123
dcterms.bibliographicCitationJiang, C., Lim, B., Zhang, S., Three-dimensional shape measurement using a structured light system with dual projectors (2018) Applied Optics, 57 (14), pp. 3983-3988
dcterms.bibliographicCitationGuo, X., Zhao, H., Jia, P., Li, K., Multiview fringe matching profilometry in a projector-camera system (2018) Optics Letters, 43 (15), pp. 3618-3621
dcterms.bibliographicCitationJiang, C., Zhang, S., Absolute phase unwrapping for dual-camera system without embedding statistical features (2017) Optical Engineering, 56 (9), p. 094114
dcterms.bibliographicCitationEbert, L.C., Flach, P., Schweitzer, W., Leipner, A., Kottner, S., Gascho, D., Thali, M.J., Breitbeck, R., Forensic 3D surface documentation at the institute of forensic medicine in zurich - workow and communication pipeline (2016) Journal of Forensic Radiology and Imaging, 5, pp. 1-7
dcterms.bibliographicCitationTakeda, M., Mutoh, K., Fourier transform profilometry for the automatic measurement of 3-D object shapes (1983) Applied Optics, 22 (24), p. 3977
dcterms.bibliographicCitationZhang, S., High-speed 3D shape measurement with structured light methods: A review (2018) Optics and Lasers in Engineering, 106, pp. 119-131
dcterms.bibliographicCitationMarrugo, A.G., Pineda, J., Romero, L.A., Vargas, R., Meneses, J., Fourier transform profilometry in labview (2018) Digital Systems, , Intech Open
dcterms.bibliographicCitationMalacara, D., (2007) Optical Shop Testing, 59. , John Wiley & Sons
dcterms.bibliographicCitationZhang, S., Absolute phase retrieval methods for digital fringe projection profilometry: A review (2018) Optics and Lasers in Engineering, 107, pp. 28-37
dcterms.bibliographicCitationGoldstein, R.M., Zebker, H.A., Werner, C.L., Satellite radar interferometry: Two-dimensional phase unwrapping (1988) Radio Science, 23 (4), pp. 713-720
dcterms.bibliographicCitationGhiglia, D.C., Pritt, M.D., (1998) Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software, 4. , Wiley New York
dcterms.bibliographicCitationHarding, K., (2013) Handbook of Optical Dimensional Metrology, , CRC Press
dcterms.bibliographicCitationZhao, W., Su, X., Chen, W., Discussion on accurate phase-height mapping in fringe projection profilometry (2018) Optical Engineering, 56 (10), pp. 1-12
dcterms.bibliographicCitationVargas, R., Marrugo, A.G., Pineda, J., Meneses, J., Romero, L.A., Camera-projector calibration methods with compensation of geometric distortions in fringe projection profilometry: A comparative study (2018) Opt. Pura Apl., 51 (3), pp. 1-10
dcterms.bibliographicCitationBusca, G., Zappa, E., Sensitivity analysis applied to an improved fourier-transform profilometry (2011) Optics and Lasers in Engineering, 49 (2), pp. 210-221
dcterms.bibliographicCitationJusto, X., Díaz, I., Gil, J.J., Gastaminza, G., Prick test: Evolution towards automated reading (2016) Allergy, 71 (8), pp. 1095-1102
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.source.eventDimensional Optical Metrology and Inspection for Practical Applications VIII 2019
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1117/12.2518649
dc.subject.keywords3D imaging
dc.subject.keywordsFourier transform profilometry
dc.subject.keywordsFringe projection
dc.subject.keywordsMedical imaging
dc.subject.keywordsSkin metrology
dc.subject.keywordsStructured light
dc.subject.keywordsContour measurement
dc.subject.keywordsFourier transforms
dc.subject.keywordsImage reconstruction
dc.subject.keywordsImaging systems
dc.subject.keywordsLight emitting diodes
dc.subject.keywordsProfilometry
dc.subject.keywordsSurface scattering
dc.subject.keywords3D imaging
dc.subject.keywordsFeature measurement
dc.subject.keywordsFourier transform profilometry
dc.subject.keywordsFringe projection
dc.subject.keywordsGlobal coordinate systems
dc.subject.keywordsGrating projection
dc.subject.keywordsStructured Light
dc.subject.keywordsSubsurface scattering
dc.subject.keywordsMedical imaging
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis work has been partly funded by Colciencias (Fondo Nacional de Financiamiento para la Ciencia, la Tec-nología y la Innovación Francisco Joséde Caldas) project 538871552485, and by Universidad Tecnológica de Bolívar projects C2018P005 and C2018P018. The authors thank R. Vargas and J. Pineda for their technical assistance.
dc.relation.conferencedate16 April 2019 through 17 April 2019
dc.type.spaConferencia
dc.identifier.orcid24329839300
dc.identifier.orcid36142156300
dc.identifier.orcid7004348301


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.