Mostrar el registro sencillo del ítem

dc.creatorDiLabio G.A.
dc.creatorKoleini M.
dc.creatorTorres E.
dc.date.accessioned2020-03-26T16:32:53Z
dc.date.available2020-03-26T16:32:53Z
dc.date.issued2013
dc.identifier.citationTheoretical Chemistry Accounts; Vol. 132, Núm. 10; pp. 1-13
dc.identifier.issn1432881X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9070
dc.description.abstractWe recently demonstrated that dispersion-correcting potentials (DCPs), which are atom-centered Gaussian-type functions that were developed for use with B3LYP (Torres and DiLabio in J Phys Chem Lett 3:1738-1744, 2012), greatly improved the ability of the underlying functional to predict non-covalent interactions. However, the recent application of the B3LYP-DCP approach to study the β-scission of the cumyloxyl radical led to a calculated barrier height that was over-estimated by ca. 8 kcal/mol. We demonstrate in the present work that the source of this error arises from the previously developed carbon atom DCPs, which erroneously alters the electron density in the C-C covalent-bonding region. In this work, we developed a new C-DCP with a form that was expected to less strongly influence the electron density in the covalent bonding region. Tests of the new C-DCP, in conjunction with previously published H-, N-, and O-DCPs, with B3LYP-DCP/6-31?G(2d,2p) on the S66, S22B, HSG-A, and HC12 databases of non-covalently interacting dimers showed that it is one of the most accurate methods available for treating intermolecular interactions, giving mean absolute errors (MAEs) of 0.19, 0.27, 0.16, and 0.18 kcal/mol, respectively. Additional testing on the S12L database of very large complexation systems gave an MAE of 2.6 kcal/mol, demonstrating that the B3LYP-DCP/6-31?G(2d,2p) approach to be one of the best-performing and most feasible methods for treating large systems containing significant non-covalent interactions. Finally, we showed that the modeling of C-C-making/C-C-breaking chemistry is well predicted using the newly developed DCPs. In addition to predicting a barrier height for the β-scission of the cumyloxyl radical, that is, within 1.7 kcal/mol of the high-level value, application of B3LYP-DCP/6-31+G(2d,2p) to 10 databases that include reaction barrier heights and energies, isomerization energies, and relative conformation energies gives performance that is among the best of all available dispersion-corrected density-functional theory approaches. © Springer-Verlag Berlin Heidelberg 2013.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84881336796&doi=10.1007%2fs00214-013-1389-x&partnerID=40&md5=53d83e02febee97c76c8a0937d46860a
dc.titleExtension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions
dcterms.bibliographicCitationPauling, L., Corey, R.B., Branson, H.R., The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain (1951) Proc Natl Acad Sci USA, 37, pp. 205-211
dcterms.bibliographicCitationAstbury, W.T., Some problems in the X-ray analysis of the structure of animal hairs and other protein fibres (1933) Trans Faraday Soc, 29, pp. 193-205
dcterms.bibliographicCitationWu, X., Vargas, M.C., Nayak, S., Lotrich, V., Scoles, G., Towards extending the applicability of density functional theory to weakly bound systems (2001) J Chem Phys, 115, pp. 8748-8757
dcterms.bibliographicCitationWu, Q., Yang, W., Empirical correction to density functional theory for van der Waals interactions (2002) J Chem Phys, 116, pp. 515-524
dcterms.bibliographicCitationGrimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J Comput Chem, 25, pp. 1463-1473
dcterms.bibliographicCitationGrimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction (2006) J Comput Chem, 27, pp. 1787-1799
dcterms.bibliographicCitationGrimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J Chem Phys, 132, p. 154104
dcterms.bibliographicCitationJohnson, E.R., Becke, A.D., A post-Hartree-Fock model of intermolecular interactions (2005) J Chem Phys, 123, p. 024101
dcterms.bibliographicCitationBecke, A.D., Arabi, A.A., Kannemann, F.O., Nonempirical density-functional theory for van der Waals interactions (2010) Can J Chem, 88, pp. 1057-1062
dcterms.bibliographicCitationA benchmark for noncovalent interactions in solids (2012) J Chem Phys, 137, p. 054103. , Otero-de-la-Roza A, Johnson ER
dcterms.bibliographicCitationTkatchenko, A., Scheffler, M., Accurate molecular van der Waals interactions from ground-state electron density and freeatom reference data (2009) Phys Rev Lett, 102, p. 073005
dcterms.bibliographicCitationMarom, N., Tkatchenko, A., Rossi, M., Gobre, V.V., Hod, O., Scheffler, M., Kronik, L., Dispersion interactions with density-functional theory: Benchmarking semiempirical and interatomic pairwise corrected density functionals (2011) J Chem Theory Comput, 7, pp. 3944-3951
dcterms.bibliographicCitationZhao, Y., Truhlar, D.G., The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals (2008) Theor Chem Acc, 120, pp. 215-241
dcterms.bibliographicCitationZhao, Y., Truhlar, D.G., Exploring the Limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions (2008) J Chem Theory Comput, 4, pp. 1849-1868
dcterms.bibliographicCitationDilabio, G.A., Accurate treatment of van der Waals interactions using standard density functional theory with effective core-type potentials: Application to carbon-containing dimers (2008) Chem Phys Lett, 455, pp. 348-353
dcterms.bibliographicCitationMackie, I.D., Dilabio, G.A., Interactions in large, polyaromatic hydrocarbons dimers: Application of density functional theory with dispersion corrections (2008) J Phys Chem A, 112, pp. 10968-10976
dcterms.bibliographicCitationJohnson, E.R., Dilabio, G.A., Theoretical study of dispersion binding of hydrocarbon molecules to hydrogen-terminated Silicon(100)-2 9 1 (2009) J Phys Chem C, 113, pp. 5681-5689
dcterms.bibliographicCitationMackie, I.D., Dilabio, G.A., Accurate dispersion interactions from standard density-functional theory methods with small basis sets (2010) Phys Chem Chem Phys, 12, pp. 6092-6098
dcterms.bibliographicCitationTorres, E., Dilabio, G.A., A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP (2012) J Phys Chem Lett, 3, pp. 1738-1744
dcterms.bibliographicCitationvon Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Optimization of effective atom centered potentials for London dispersion forces in density functional theory (2004) Phys Rev Lett, 93, p. 153004
dcterms.bibliographicCitationvon Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory (2005) Phys Rev B, 71, p. 195119
dcterms.bibliographicCitationLin, I.-C., Coutinho-Neto, M.D., Felsenheimer, C., von Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr (2007) Phys Rev B, 75, p. 205131
dcterms.bibliographicCitationChristiansen, P.A., Lee, Y.S., Pitzer, K.S., Improved ab initio effective core potentials for molecular calculations (1979) J Chem Phys, 71, pp. 4445-4450
dcterms.bibliographicCitationBecke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior (1988) Phys Rev A, 38, pp. 3098-3100
dcterms.bibliographicCitationLee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys Rev B, 37, pp. 785-789
dcterms.bibliographicCitationD'Alfonso, C., Bietti, M., Dilabio, G.A., Lanzalunga, O., Salamone, M., Reactions of the phthalimide N-oxyl radical (PINO) with activated phenols: The contribution of pi-stacking interactions to hydrogen atom transfer rates (2013) J Org Chem, 78, pp. 1026-1037
dcterms.bibliographicCitationSalamone, M., Dilabio, G.A., Bietti, M., Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding (2012) J Org Chem, 77, pp. 10479-10487
dcterms.bibliographicCitationSalamone, M., Dilabio, G.A., Bietti, M., Hydrogen atom abstraction selectivity in the reactions of alkylamines with the benzyloxyl and cumyloxyl radicals. The importance of structure and of substrate radical hydrogen bonding (2011) J Am Chem Soc, 133, pp. 16625-16634
dcterms.bibliographicCitationTorres, E., Dilabio, G.A., Density-functional theory with dispersion-correcting potentials for methane: Bridging the efficiency and accuracy gap between high-level wave function and classical molecular mechanics methods (2013) J Chem Theory Comput, , doi:10.1021/ct4003114
dcterms.bibliographicCitationBoys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol Phys, 19, pp. 553-566
dcterms.bibliographicCitationSherrill, C.D., Takatani, T., Hohenstein, E.G., An assessment of theoretical methods for nonbonded interactions: Comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S (2009) J Phys Chem A, 113, pp. 10146-10159
dcterms.bibliographicCitationMackie, I.D., Dilabio, G.A., Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies (2011) J Chem Phys, 135, p. 134318
dcterms.bibliographicCitationFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford, CT
dcterms.bibliographicCitationŘezáč, J., Riley, K.E., Hobza, P., Extensions of the S66 data set: More accurate interaction energies and angular-displaced nonequilibrium geometries (2011) J Chem Theory Comput, 7, pp. 3466-3470
dcterms.bibliographicCitationJurečka, P., Šponer, J., Černý, J., Hobza, P., Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs (2006) Phys Chem Chem Phys, 8, pp. 1985-1993. , (The ""B"" designation in the set name refers to revised BEs as computed by Marshall et al. in reference 39)
dcterms.bibliographicCitationMarshall, M.S., Burns, L.A., Sherrill, C.D., Basis set convergence of the coupled-cluster correction, dMP2: Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases (2011) J Chem Phys, 135, p. 194102
dcterms.bibliographicCitationGranatier, J., Pitoňák, M., Hobza, P., Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers (2012) J Chem Theor Comput, 8, pp. 2282-2292
dcterms.bibliographicCitationGrimme, S., Supramolecular binding thermodynamics by dispersion-corrected density functional theory (2012) Chem Euro J, 18, pp. 9955-9964
dcterms.bibliographicCitationGoerigk, L., Grimme, S., A general database for main group thermochemistry, kinetics, and noncovalent interactions-assessment of common and reparameterized (meta-)GGA density functionals (2010) J Chem Theory Comput, 6, pp. 107-126
dcterms.bibliographicCitationGoerigk, L., Grimme, S., Efficient and accurate double-hybridmeta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions (2011) J Chem Theory Comput, 7, pp. 291-309
dcterms.bibliographicCitationFrisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2004) Gaussian 03, Revision D.01, , Gaussian Inc., Pittsburgh, PA
dcterms.bibliographicCitationAvila, D.V., Brown, C.E., Ingold, K.U., Lusztyk, J., Solvent effects on the competitive b-scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long-standing problem (1993) J Am Chem Soc, 115, pp. 466-470
dcterms.bibliographicCitationMontgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., Petersson, G.A., A complete basis set model chemistry. VII. Use of the minimum population localization method (2000) J Chem Phys, 112, pp. 6532-6542
dcterms.bibliographicCitationJohnson, E.R., Clarkin, O.J., Dilabio, G.A., Density functional theory based model calculations for accurate bond dissociation enthalpies. 3. a single approach for X-H, X-X, and X-Y (X, Y) C, N, O, S, halogen) bonds (2003) J Phys Chem A, 107, pp. 9953-9963
dcterms.bibliographicCitationDilabio, G.A., Johnson, E.R., Otero-De, R.A., Performance of conventional and dispersion-corrected densityfunctional theory methods for hydrogen bonding interaction energies (2013) Phys Chem Chem Phys, 15, pp. 12821-12828
dcterms.bibliographicCitationGoerigk, L., Kruse, H., Grimme, S., Benchmarking density functional methods against the S66 and S66 9 8 datasets for noncovalent interactions (2011) ChemPhysChem, 12, pp. 3421-3433
dcterms.bibliographicCitationFaver, J.C., Benson, M.L., He, X.A., Roberts, B.P., Wang, B., Marshall, M.S., Kennedy, M.R., Merz, K.M., Formal estimation of errors in computed absolute interaction energies of protein-ligand complexes (2011) J Chem Theory Comput, 7, pp. 790-797
dcterms.bibliographicCitationBurns, L.A., Vázquez-Mayagoitia, Á., Sumpter, B.G., Sherrill, C.D., Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchangehole dipole moment (XDM) theory, and specialized functionals (2011) J Chem Phys, 134, p. 084107
dcterms.bibliographicCitationPerdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77, pp. 3865-3868
dcterms.bibliographicCitationRisthaus, T., Grimme, S., Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes (2013) J Chem Theory Comput, 9, pp. 1580-1591
dcterms.bibliographicCitationKarton, A., Tarnopolsky, A., Lamére, J.F., Schatz, G.C., Martin, J.M.L., Highly accurate first-principles benchmark data sets for the parametrization and thermochemical kinetics (2008) J Phys Chem A, 112, pp. 12868-12886
dcterms.bibliographicCitationGuner, V., Khuong, K.S., Leach, A.G., Lee, P.S., Bartberger, M.D., Houk, K.N., A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: The performance of ab initio, density functional, CASSCF, CASPT2, and CBSQB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries (2003) J Phys Chem A, 107, pp. 11445-11459
dcterms.bibliographicCitationEss, D.H., Houk, K.N., Activation energies of pericyclic reactions: Performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1, 3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions (2005) J Phys Chem A, 109, pp. 9542-9553
dcterms.bibliographicCitationDinadayalane, T.C., Vijaya, R., Smitha, A., Narahari, S.G., Diels-alder reactivity of butadiene and cyclic five-membered dienes ((CH)4X, X = CH2, SiH2, O, NH, PH, and S) with ethylene: A benchmark study (2002) J Phys Chem A, 106, pp. 1627-1633
dcterms.bibliographicCitationJohnson, E.R., Mori-Sánchez, P., Cohen, A.J., Yang, W., Delocalization errors in density functionals and implications for maingroup thermochemistry (2008) J Chem Phys, 129, p. 204112
dcterms.bibliographicCitationKrieg, H., Grimme, S., Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed! (2010) Mol Phys, 108, pp. 2655-2666
dcterms.bibliographicCitationGrimme, S., Steinmetz, M., Korth, M., How to compute isomerization energies of organic molecules with quantum chemical methods (2007) J Org Chem, 72, pp. 2118-2126
dcterms.bibliographicCitationHuenerbein, R., Schirmer, B., Moellmann, J., Grimme, S., Effects of London dispersion on the isomerization reactions of large organic molecules: A density functional benchmark study (2010) Phys Chem Chem Phys, 12, pp. 6940-6948
dcterms.bibliographicCitationŘeha, D., Valdes, H., Vondrášek, J., Hobza, P., Abu-Riziq, A., Crews, B., de Vries, M.S., Structure and IR spectrum of phenylalanyl-glycyl-glycine tripeptide in the gas-phase: IR/UV experiments, Ab initio quantum chemical calculations, and molecular dynamic simulations (2005) Chem Euro J, 11, pp. 6803-6817
dcterms.bibliographicCitationGruzman, D., Karton, A., Martin, J.M.L., Performance of Ab initio and density functional methods for conformational equilibria of CnH2n?2 alkane isomers (n = 4-8) (2009) J Phys Chem A, 113, pp. 11974-11983
dcterms.bibliographicCitationCsonka, G.I., French, A.D., Johnson, G.P., Stortz, C.A., Evaluation of density functionals and basis sets for carbohydrates (2009) J Chem Theory Comput, 5, pp. 679-692
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/s00214-013-1389-x
dc.subject.keywordsB3LYP
dc.subject.keywordsDensity-functional theory
dc.subject.keywordsDispersion interactions
dc.subject.keywordsDispersion-correcting potentials
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo
dc.identifier.orcid7003322749
dc.identifier.orcid17434516800
dc.identifier.orcid35094573000


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.