Mostrar el registro sencillo del ítem

dc.creatorMontoya O.D.
dc.creatorGil-González W.
dc.creatorGarcés, Alejandro
dc.creatorEspinosa-Pérez, G.
dc.date.accessioned2020-03-26T16:32:33Z
dc.date.available2020-03-26T16:32:33Z
dc.date.issued2018
dc.identifier.citationJournal of Energy Storage; Vol. 17, pp. 261-271
dc.identifier.issn2352152X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8880
dc.description.abstractIn this paper an indirect interconnection and damping assignment passivity-based control (IDA-PBC) applied to the three-phase superconducting magnetic energy storage systems (SMES) is proposed to support active and reactive power in distribution systems. The SMES is connected to the distribution network using a pulse-width-modulated current source converter (PWM-CSC), due to its intrinsic current features that are more natural for controlling the current of a superconducting coil. A Hamiltonian function is selected as an hyperboloid representation taking into account the open loop dynamics of the system. The indirect control strategy is used to decouple the dynamical behavior between ac and dc side of the system, which allows to control active and reactive power independently in the ac side, while the dc side of the converter is employed as a supervisor controller for active power interchange. Simulation results demonstrate the efficiency and robustness of the proposed control methodology applied on a low-voltage distribution network under different operative conditions where the tracking errors were less than 6.2%. © 2018 Elsevier Ltdeng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85048704609&doi=10.1016%2fj.est.2018.03.004&partnerID=40&md5=4f360b1e69eb829c98314b4ba6505c36
dc.titleIndirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC
dcterms.bibliographicCitationLuo, X., Wang, J., Dooner, M., Clarke, J., Overview of current development in electrical energy storage technologies and the application potential in power system operation (2015) Appl. Energy, 137, pp. 511-536
dcterms.bibliographicCitationOrtega, A., Milano, F., Generalized model of VSC-based energy storage systems for transient stability analysis (2016) IEEE Trans. Power Syst., 31 (5), pp. 3369-3380
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Chen, S., Application of SMES in wind farm to improve voltage stability (2008) Physica C, 468 (15-20), pp. 2100-2103
dcterms.bibliographicCitationKim, A.-R., Kim, G.-H., Heo, S., Park, M., Yu, I.-K., Kim, H.-M., SMES application for frequency control during islanded microgrid operation (2013) Physica C, 484, pp. 282-286
dcterms.bibliographicCitationFarahani, M., A new control strategy of SMES for mitigating subsynchronous oscillations (2012) Physica C, 483, pp. 34-39
dcterms.bibliographicCitationVazquez, S., Lukic, S.M., Galvan, E., Franquelo, L.G., Carrasco, J.M., Energy storage systems for transport and grid applications (2010) IEEE Trans. Ind. Electron., 57 (12), pp. 3881-3895
dcterms.bibliographicCitationSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected front end converters under non-ideal grid conditions (2017) Electr. Power Syst. Res., 142, pp. 12-19
dcterms.bibliographicCitationBilgin, H., Ermis, M., Current source converter based STATCOM: operating principles, design and field performance (2011) Electr. Power Syst. Res., 81 (2), pp. 478-487
dcterms.bibliographicCitationYunus, A.M.S., Masoum, M.A.S., Abu-Siada, A., Application of SMES to enhance the dynamic performance of DFIG during voltage sag and swell (2012) IEEE Trans. Appl. Supercond., 22 (4), p. 5702009
dcterms.bibliographicCitationWang, S., Tang, Y., Shi, J., Gong, K., Liu, Y., Ren, L., Li, J., Design and advanced control strategies of a hybrid energy storage system for the grid integration of wind power generations (2015) IET Renew. Power Gener., 9 (2), pp. 89-98
dcterms.bibliographicCitationAli, M.H., Wu, B., Dougal, R.A., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47
dcterms.bibliographicCitationGiraldo, E., Garces, A., An adaptive control strategy for a wind energy conversion system based on PWM-CSC and PMSG (2014) IEEE Trans. Power Syst., 29 (3), pp. 1446-1453
dcterms.bibliographicCitationJiang, X., Chu, X., Wu, X., Liu, W., Lai, Y., Wang, Z., Dai, Y., Lan, H., Smes system for study on utility and customer power applications (2001) IEEE Trans. Appl. Supercond., 11 (1), pp. 1765-1768
dcterms.bibliographicCitationLiu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150
dcterms.bibliographicCitationGil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ing. Cienc., 13 (26), pp. 147-171
dcterms.bibliographicCitationHayashi, H., Hatabe, Y., Nagafuchi, T., Taguchi, A., Terazono, K., Ishii, T., Taniguchi, S., Test results of power system control by experimental SMES (2006) IEEE Trans. Appl. Supercond., 16 (2), pp. 598-601
dcterms.bibliographicCitationShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Deliv., 23 (4), pp. 2097-2104
dcterms.bibliographicCitationNgamroo, I., Simultaneous optimization of SMES coil size and control parameters for robust power system stabilization (2011) IEEE Trans. Appl. Supercond., 21 (3), pp. 1358-1361
dcterms.bibliographicCitationWang, Z., Zou, Z., Zheng, Y., Design and control of a photovoltaic energy and SMES hybrid system with current-source grid inverter (2013) IEEE Trans. Appl. Supercond., 23 (3). , 5701505-5701505
dcterms.bibliographicCitationNguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to SMES system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5
dcterms.bibliographicCitationWang, S., Jin, J., Design and analysis of a fuzzy logic controlled SMES system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5
dcterms.bibliographicCitationHemeida, A.M., A fuzzy logic controlled superconducting magnetic energy storage, {SMES} frequency stabilizer (2010) Electr. Power Syst. Res., 80 (6), pp. 651-656
dcterms.bibliographicCitationAli, M.H., Wu, B., Tamura, J., Dougal, R.A., Minimization of shaft oscillations by fuzzy controlled {SMES} considering time delay (2010) Electr. Power Syst. Res., 80 (7), pp. 770-777
dcterms.bibliographicCitationLiu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782
dcterms.bibliographicCitationMahmud, M.A., Hossain, M.J., Pota, H.R., Dynamical modeling and nonlinear control of superconducting magnetic energy systems: applications in power systems (2014) 2014 Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Garcés, A., Espinosa-Pérez, G., IDA-passivity-based control for superconducting magnetic energy storage with PWM-CSC (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95
dcterms.bibliographicCitationRamírez, H., Le Gorrec, Y., Maschke, B., Couenne, F., On the passivity based control of irreversible processes: a port-Hamiltonian approach (2016) Automatica, 64, pp. 105-111
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: a review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907
dcterms.bibliographicCitationSerra, F., Angelo, C.D., Forchetti, D., Passivity based control of a three-phase front end converter (2013) IEEE Lat. Am. Trans., 11 (1), pp. 293-299
dcterms.bibliographicCitationNageshrao, S.P., Lopes, G.A.D., Jeltsema, D., Babuska, R., Port-Hamiltonian systems in adaptive and learning control: a survey (2016) IEEE Trans. Autom. Control, 61 (5), pp. 1223-1238
dcterms.bibliographicCitationDonaire, A., Ortega, R., Romero, J., Simultaneous interconnection and damping assignment passivity-based control of mechanical systems using dissipative forces (2016) Syst. Control Lett., 94, pp. 118-126
dcterms.bibliographicCitationValipour, M., Banihabib, M.E., Behbahani, S.M.R., Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir (2013) J. Hydrol., 476, pp. 433-441. , http://www.sciencedirect.com/science/article/pii/S002216941200981X
dcterms.bibliographicCitationViero, D.P., Valipour, M., Modeling anisotropy in free-surface overland and shallow inundation flows (2017) Adv. Water Resour., 104, pp. 1-14. , http://www.sciencedirect.com/science/article/pii/S0309170816307722
dcterms.bibliographicCitationValipour, M., How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? (2016) Agriculture, 6 (4), p. 53
dcterms.bibliographicCitationValipour, M., Sefidkouhi, M.A.G., Raeini-Sarjaz, M., Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events (2017) Agric. Water Manag., 180, pp. 50-60. , http://www.sciencedirect.com/science/article/pii/S0378377416303195
dcterms.bibliographicCitationSivák, P., Hroncová, D., State-space model of a mechanical system in MATLAB/simulink (2012) Proc. Eng., 48, pp. 629-635. , http://www.sciencedirect.com/science/article/pii/S1877705812046267, Modelling of Mechanical and Mechatronics Systems
dcterms.bibliographicCitationRashid, M.H., Power Electronics Handbook-Devices, Circuits, and Applications (2011), Elsevier
dcterms.bibliographicCitationIEEE standard for interconnecting distributed resources with electric power systems – Amendment 1 (2014) IEEE Std 1547-2014 (Amendment to IEEE Std 1547-2003), pp. 1-16
dcterms.bibliographicCitationBierhoff, M.H., Fuchs, F.W., Semiconductor losses in voltage source and current source IGBT converters based on analytical derivation (2004) 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004, PESC 04, vol. 4, IEEE, pp. 2836-2842
dcterms.bibliographicCitationPerko, L., (2013) Differential Equations and Dynamical Systems, 7. , Springer Science & Business Media
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.est.2018.03.004
dc.subject.keywordsActive and reactive power compensation
dc.subject.keywordsDistribution systems
dc.subject.keywordsInterconnection and damping assignment passivity-based control
dc.subject.keywordsPulse-width-modulated current source converter
dc.subject.keywordsSuperconducting magnetic energy storage
dc.subject.keywordsDamping
dc.subject.keywordsElectric energy storage
dc.subject.keywordsElectric power distribution
dc.subject.keywordsElectric power system interconnection
dc.subject.keywordsMagnetic storage
dc.subject.keywordsPower converters
dc.subject.keywordsPulse width modulation
dc.subject.keywordsReactive power
dc.subject.keywordsSuperconducting coils
dc.subject.keywordsSuperconducting magnets
dc.subject.keywordsVoltage distribution measurement
dc.subject.keywordsActive and Reactive Power
dc.subject.keywordsDistribution systems
dc.subject.keywordsPassivity based control
dc.subject.keywordsPulse-width-modulated
dc.subject.keywordsSuperconducting magnetic energy storages
dc.subject.keywordsHamiltonians
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThe authors want to thank the support of National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) , by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira. Appendix A
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500
dc.identifier.orcid55989699400


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.