Mostrar el registro sencillo del ítem

dc.contributor.authorVillar-Salinas, Sergio
dc.contributor.authorPacheco Orozco, Sebastián
dc.contributor.authorCarrillo, Julián
dc.contributor.authorLópez-Almansa, Francisco
dc.date.accessioned2024-04-09T20:04:33Z
dc.date.available2024-04-09T20:04:33Z
dc.date.issued2024-04-03
dc.date.submitted2024-04-09
dc.identifier.citationVillar-Salinas, S., Pacheco, S., Carrillo, J., & López-Almansa, F. (2024). Analysis of the influence of high axial compression ratio in RC columns on the structural response of MRF buildings. Structural Engineering and Mechanics, 90(1), 51–70. https://doi.org/10.12989/sem.2024.90.1.051spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12656
dc.description.abstractPoorly designed reinforced concrete (RC) columns of actual moment-resisting frame (MRF) buildings can undergo Axial Compression Ratios (ACR) so high as their demand exceeds their capacity, even for serviceability gravity load combinations; this lack commonly leads to insufficient seismic strength. Nonetheless, many seismic design codes do not specify limits for ACR. The main contribution of this research is to investigate the need to limit the ACR in seismic design. For this purpose, three prototype 6 and 11-story RC MRF buildings are analyzed in this paper; these buildings have columns undergoing excessive ACR, according to the limits prescribed by standards. To better that situation, three types of alterations are performed: retrofitting the abovementioned overloaded columns by steel jacketing, increasing the concrete strength, and reducing the number of stories. Several finite element analyses are conducted using the well-known software SAP2000 and the results are used for further calculations. Code-type and pushover analyses are performed on the original and retrofitted buildings; the suitability of the other modified buildings is checked by code-type analyses only. The obtained results suggest that ACR is a rather reliable indicator of the final building strength; hence, apparently, limiting the ACR in the standards (for early stages of design) might avoid unnecessary verificationsspa
dc.description.sponsorshipFundación Carolina, Universidad Tecnológica de Bolívar, PCEM SASspa
dc.format.extent20 págs.
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.titleInfluence of High Axial Compression Ratios in RC Columns on the Seismic Response of MRF Buildingsspa
dcterms.bibliographicCitationAlfarah, B., F. López-Almansa, and S. Oller. 2020. “Numerical Study on the Relevance of Columns Hidden Failure Modes in the Seismic Capacity of Non-Ductile RC Frames.” J. Earthq. Eng., 24 (9): 1417–1434. Taylor & Francis. https://doi.org/10.1080/13632469.2018.1458666.spa
dcterms.bibliographicCitationAbou-Elfath, H., M. Ramadan, and F. Omar Alkanai. 2017. “Upgrading the seismic capacity of existing RC buildings using buckling restrained braces.” Alex. Eng. J., 56 (2): 251–262. https://doi.org/10.1016/j.aej.2016.11.018.spa
dcterms.bibliographicCitationAl-Osta, M. A., U. Khan, M. H. Baluch, and M. K. Rahman. 2018. “Effects of variation of axial load on seismic performance of shear deficient RC exterior BCJs.” Int. J. Concr. Struct. Mater., 12 (1): 46. https://doi.org/10.1186/s40069-018-0277-0.spa
dcterms.bibliographicCitationBhatt, C., and R. Bento. 2014. “The Extended Adaptive Capacity Spectrum Method for the Seismic Assessment of Plan-Asymmetric Buildings.” Earthq. Spectra, 30 (2): 683–703. https://doi.org/10.1193/022112EQS048M.spa
dcterms.bibliographicCitationCaredda, G., N. Makoond, M. Buitrago, J. Sagaseta, M. Chryssanthopoulos, and J. M. Adam. 2023. “Learning from the progressive collapse of buildings.” Dev. Built Environ., 15: 100194. https://doi.org/10.1016/j.dibe.2023.100194.spa
dcterms.bibliographicCitationCarrillo, J., and G. González. 2007. “Inelastic modeling of concrete frames with nonreinforced masonry.” DYNA, 74 (152): 229–239.spa
dcterms.bibliographicCitationChen, Z. Y., W. Chen, W. Zhang, and M. L. Lou. 2016. “Effects of axial compression ratio of central columns on seismic performance of a multi-story underground structure.” Int. J. Comput. Methods, 13 (04): 1641014. World Scientific Publishing Co. https://doi.org/10.1142/S0219876216410140.spa
dcterms.bibliographicCitationCimellaro, G. P., T. Giovine, and D. López-García. 2014. “Bidirectional pushover analysis of irregular structures.” J. Struct. Eng., 140 (9): 04014059. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001032.spa
dcterms.bibliographicCitationComert, M., C. Demir, A. O. Ates, K. Orakcal, and A. Ilki. 2017. “Seismic performance of three-storey full-scale sub-standard reinforced concrete buildings.” Bull. Earthq. Eng., 15 (8): 3293–3320. https://doi.org/10.1007/s10518-016-0023-4.spa
dcterms.bibliographicCitationDomínguez, D., F. López-Almansa, and A. Benavent-Climent. 2016. “Would RC wide-beam buildings in Spain have survived Lorca earthquake (11-05-2011)?” Eng. Struct., 108: 134–154. https://doi.org/10.1016/j.engstruct.2015.11.020.spa
dcterms.bibliographicCitationElwood, K. J., and J. P. Moehle. 2005. “Drift Capacity of Reinforced Concrete Columns with Light Transverse Reinforcement.” Earthq. Spectra, 21 (1): 71–89. https://doi.org/10.1193/1.1849774.spa
dcterms.bibliographicCitationElwood, K. J., and J. P. Moehle. 2008. “Dynamic collapse analysis for a reinforced concrete frame sustaining shear and axial failures.” Earthq. Eng. Struct. Dyn., 37 (7): 991–1012. John Wiley & Sons, Ltd. https://doi.org/10.1002/eqe.787.spa
dcterms.bibliographicCitationFadaei, E., H. Shakib, and A. Azarbakht. 2020. “Structural Global Performance Assessment Versus Individual Element-Oriented Performance-Based Assessment.” Iran. J. Sci. Technol. Trans. Civ. Eng., 44 (S1): 141–150. https://doi.org/10.1007/s40996-020-00379-9.spa
dcterms.bibliographicCitationFalcone, R., F. Carrabs, R. Cerulli, C. Lima, and E. Martinelli. 2019. “Seismic retrofitting of existing RC buildings: a rational selection procedure based on Genetic Algorithms.” Structures, 22: 310–326. https://doi.org/10.1016/j.istruc.2019.08.006.spa
dcterms.bibliographicCitationHan, S. W., and A. K. Chopra. 2006. “Approximate incremental dynamic analysis using the modal pushover analysis procedure.” Earthq. Eng. Struct. Dyn., 35 (15): 1853–1873. https://doi.org/10.1002/eqe.605.spa
dcterms.bibliographicCitationJaradat, Y., and H. Far. 2021. “Optimum stiffness values for impact element models to determine pounding forces between adjacent buildings.” Struct. Eng. Mech., 77 (2): 293–304. https://doi.org/10.12989/SEM.2021.77.2.293.spa
dcterms.bibliographicCitationKamal, M., M. Inel, and B. T. Cayci. 2022. “Seismic behavior of mid-rise reinforced concrete adjacent buildings considering soil-structure interaction.” J. Build. Eng., 51: 104296. https://doi.org/10.1016/j.jobe.2022.104296.spa
dcterms.bibliographicCitationLeti, M., and H. Bilgin. 2024. “Investigation of seismic performance of a premodern RC building typology after November 26, 2019 earthquake.” Struct. Eng. Mech., 89 (5): 491–505. https://doi.org/10.12989/sem.2024.89.5.491.spa
dcterms.bibliographicCitationLi, Y. J., and P. Liu. 2012. “Effect of axial compression ratio on ductility and bearing capacity of specially shaped columns with HRB500 reinforcement.” Appl. Mech. Mater., 204–208: 1066–1069. Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMM.204-208.1066.spa
dcterms.bibliographicCitationLópez-Almansa, F., D. Domínguez, and A. Benavent-Climent. 2013. “Vulnerability analysis of RC buildings with wide beams located in moderate seismicity regions.” Eng. Struct., 46: 687–702. https://doi.org/10.1016/j.engstruct.2012.08.033.spa
dcterms.bibliographicCitationMiano, A., G. Chiumiento, A. Formisano, and A. Prota. 2022. “How does the knowledge level affect the seismic retrofit cost? The case study of a RC building.” Struct. Eng. Mech., 82 (5): 557–569. https://doi.org/10.12989/SEM.2022.82.5.557.spa
dcterms.bibliographicCitationNahar, M., K. Islam, and A. M. Billah. 2020. “Seismic collapse safety assessment of concrete beam-column joints reinforced with different types of shape memory alloy rebars.” J. Build. Eng., 29: 101106. https://doi.org/10.1016/j.jobe.2019.101106.spa
dcterms.bibliographicCitationPampanin, S., and U. Akguzel. 2011. “Performance-Based Seismic Retrofit of Existing Reinforced Concrete Frame Buildings using Fibre-Reinforced Polymers: Challenges and Solutions.” Struct. Eng. Int., 21 (3): 260–270. https://doi.org/10.2749/101686611X13049248220041.spa
dcterms.bibliographicCitationPujades, L. G., A. H. Barbat, R. González-Drigo, J. Avila, and S. Lagomarsino. 2012. “Seismic performance of a block of buildings representative of the typical construction in the Eixample district in Barcelona (Spain).” Bull. Earthq. Eng., 10 (1): 331–349. https://doi.org/10.1007/s10518-010-9207-5.spa
dcterms.bibliographicCitationQuintana Gallo, P., U. Akguzel, A. J. Carr, and S. Pampanin. 2022. “Seismic response of a non-ductile RC frame building subjected to shake-table excitations.” Bull. Earthq. Eng., 20 (1): 517–545. https://doi.org/10.1007/s10518-021-01228-4.spa
dcterms.bibliographicCitationRequena-Garcia-Cruz, M. V., A. Morales-Esteban, and P. Durand-Neyra. 2022. “Assessment of specific structural and ground-improvement seismic retrofitting techniques for a case study RC building by means of a multi-criteria evaluation.” Structures, 38: 265–278. https://doi.org/10.1016/j.istruc.2022.02.015.spa
dcterms.bibliographicCitationReyes, J. C., and A. K. Chopra. 2011. “Three‐dimensional modal pushover analysis of buildings subjected to two components of ground motion, including its evaluation for tall buildings.” Earthq. Eng. Struct. Dyn., 40 (7): 789–806. https://doi.org/10.1002/eqe.1060.spa
dcterms.bibliographicCitationRicci, P., F. De Luca, and G. M. Verderame. 2011. “6th April 2009 L’Aquila earthquake, Italy: reinforced concrete building performance.” Bull. Earthq. Eng., 9 (1): 285–305. https://doi.org/10.1007/s10518-010-9204-8.spa
dcterms.bibliographicCitationSaborio-Romano, D., G. J. O’Reilly, D. P. Welch, and L. Landi. 2018. “Simplified pushover analysis of moment resisting frame structures AU - Sullivan, Timothy J.” J. Earthq. Eng., 1–28. https://doi.org/10.1080/13632469.2018.1528911.spa
dcterms.bibliographicCitationSezen, H. 2008. “Shear deformation model for reinforced concrete columns.” Struct. Eng. Mech., 28 (1): 39–52. https://doi.org/10.12989/SEM.2008.28.1.039.spa
dcterms.bibliographicCitationSheth, R., J. Prajapati, and D. Soni. 2018. “Comparative study nonlinear static pushover analysis and displacement based adaptive pushover analysis method.” Int. J. Struct. Eng., 9 (1): 81–90. https://doi.org/10.1504/IJSTRUCTE.2018.090753.spa
dcterms.bibliographicCitationSu, R. K. L., and W. S. Man. 2007. “Seismic behaviour of slender reinforced concrete shear walls under high axial load ratio.” Eng. Struct., 29 (8): 1957–1965. https://doi.org/10.1016/j.engstruct.2006.10.020.spa
dcterms.bibliographicCitationTena-Colunga, A., E. A. Godínez-Domínguez, and H. Hernández-Ramírez. 2022. “Seismic retrofit and strengthening of buildings. Observations from the 2017 Puebla-Morelos earthquake in Mexico City.” J. Build. Eng., 47: 103916. https://doi.org/10.1016/j.jobe.2021.103916.spa
dcterms.bibliographicCitationTore, E., C. Demir, M. Comert, and A. Ilki. 2021. “Seismic Collapse Performance of a Full-Scale Concrete Building with Lightly Reinforced Columns.” J. Struct. Eng., 147 (12): 04021207. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003178.spa
dcterms.bibliographicCitationVillar-Salinas, S., A. Guzmán, and J. Carrillo. 2021. “Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing.” J. Build. Eng., 33: 101510. https://doi.org/10.1016/j.jobe.2020.101510.spa
dcterms.bibliographicCitationYang, Y., N. Hao, Y. Xue, S. Feng, Y. Yu, and S. Zhang. 2022. “Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios.” Struct. Eng. Mech., 84 (3): 345–360. https://doi.org/10.12989/SEM.2022.84.3.345.spa
dcterms.bibliographicCitationYuen, T. Y. P., J. S. Kuang, and D. Y. B. Ho. 2016. “Ductility design of RC columns. Part 1: consideration of axial compression ratio.” HKIE Trans., 23 (4): 230–244. https://doi.org/10.1080/1023697X.2016.1232179.spa
dcterms.bibliographicCitationZimos, D. K., V. K. Papanikolaou, A. J. Kappos, and P. E. Mergos. 2020. “Shear-Critical Reinforced Concrete Columns under Increasing Axial Load.” ACI Struct. J., 117 (5). https://doi.org/10.14359/51725886.spa
datacite.rightshttp://purl.org/coar/access_right/c_f1cfspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.12989/sem.2024.90.1.051
dc.subject.keywordsAxial Compression Ratiospa
dc.subject.keywordsSeismic Performancespa
dc.subject.keywordsModal Pushover Analysisspa
dc.subject.keywordsSteel Jacketingspa
dc.subject.keywordsRetrofitted RC Buildingsspa
dc.rights.accessrightsinfo:eu-repo/semantics/embargoedAccessspa
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.publisher.disciplineIngeniería Civilspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.