Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Fernández, Joaquin
dc.contributor.authorCano, Heidis
dc.contributor.authorGuerra, Yoleima
dc.contributor.authorPuello Polo, Esneyder
dc.contributor.authorRíos-Rojas, John Fredy
dc.contributor.authorVivas-Reyes, Ricardo
dc.contributor.authorOviedo, Juan
dc.date.accessioned2023-09-05T19:18:16Z
dc.date.available2023-09-05T19:18:16Z
dc.date.issued2022-04-20
dc.date.submitted2023-09-02
dc.identifier.citationHernández Fernández, J.; Cano, H.; Guerra, Y.; Puello Polo, E.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. https://doi.org/10.3390/su14094920spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12471
dc.description.abstractIn this research, the presence of microplastics was detected through a differential scanning calorimetry (DSC) analysis of three wastewater treatment plants. One of these plants applied only a preliminary treatment stage while the others applied up to a secondary treatment stage to evaluate their effectiveness. The results showed the presence of polyethylene (PE), polystyrene (PS), polypropylene (PP) and polyethylene terephthalate (PET), which were classified as fragments, fibers or granules. During the evaluation of the plants, it was determined that the preliminary treatment did not remove more than 58% of the microplastics, while the plants applying up to a secondary treatment with activated sludge achieved microplastic removal effectiveness between 90% and 96.9%.spa
dc.format.extent10 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceSustainability, Vol. 14 N° 9 (2022)spa
dc.titleIdentification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC)spa
dcterms.bibliographicCitationPicó, Y.; Soursou, V.; Alfarhan, A.H.; El-Sheikh, M.A.; Barceló, D. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian cities and assessment of their ecological risk. J. Hazard. Mater. 2021, 416, 125747spa
dcterms.bibliographicCitationMallow, O.; Spacek, S.; Schwarzböck, T.; Fellner, J.; Rechberger, H. A new thermoanalytical method for the quantification of microplastics in industrial wastewater. Environ. Pollut. 2019, 259, 113862.spa
dcterms.bibliographicCitationHamidian, A.H.; Ozumchelouei, E.J.; Feizi, F.; Wu, C.; Zhang, Y.; Yang, M. A review on the characteristics of microplastics in wastewater treatment plants: A source for toxic chemicals. J. Clean. Prod. 2021, 295, 126480spa
dcterms.bibliographicCitationHidayaturrahman, H.; Lee, T.-G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702spa
dcterms.bibliographicCitationExpósito, N.; Rovira, J.; Sierra, J.; Folch, J.; Schuhmacher, M. Microplastics levels, size, morphology and composition in marine water, sediments and sand beaches. Case study of Tarragona coast (western Mediterranean). Sci. Total Environ. 2021, 786, 147453spa
dcterms.bibliographicCitationBogdanowicz, A.; Zubrowska-Sudol, M.; Krasinski, A.; Sudol, M. Cross-Contamination as a Problem in Collection and Analysis of Environmental Samples Containing Microplastics—A Review. Sustainability 2021, 13, 12123spa
dcterms.bibliographicCitationPrajapati, S.; Beal, M.; Maley, J.; Brinkmann, M. Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res. 2021, 28, 32545–32553.spa
dcterms.bibliographicCitationYuan, F.; Zhao, H.; Sun, H.; Zhao, J.; Sun, Y. Abundance, morphology, and removal efficiency of microplastics in two wastewater treatment plants in Nanjing, China. Environ. Sci. Pollut. Res. 2020, 28, 9327–9337spa
dcterms.bibliographicCitationCao, Y.; Wang, Q.; Ruan, Y.; Wu, R.; Chen, L.; Zhang, K.; Lam, K.S.P. Intra-day microplastic variations in wastewater: A case study of a sewage treatment plant in Hong Kong. Mar. Pollut. Bull. 2020, 160, 111535.spa
dcterms.bibliographicCitationUheida, A.; Mejía, H.G.; Abdel-Rehim, M.; Hamd, W.; Dutta, J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2020, 406, 124299spa
dcterms.bibliographicCitationMaddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11spa
dcterms.bibliographicCitationLu, Y.; Zhang, Y.; Deng, Y.; Jiang, W.; Zhao, Y.; Geng, J.; Ding, L.; Ren, H.-Q. Uptake and Accumulation of Polystyrene Microplastics in Zebrafish (Danio rerio) and Toxic Effects in Liver. Environ. Sci. Technol. 2016, 50, 4054–4060. [spa
dcterms.bibliographicCitationSchirinzi, G.F.; Llorca, M.; Seró, R.; Moyano, E.; Barceló, D.; Abad, E.; Farré, M. Trace analysis of polystyrene microplastics in natural waters. Chemosphere 2019, 236, 124321.spa
dcterms.bibliographicCitationXu, Z.; Bai, X.; Ye, Z. Removal and generation of microplastics in wastewater treatment plants: A review. J. Clean. Prod. 2021, 291, 125982.spa
dcterms.bibliographicCitationHabib, R.Z.; Al Kendi, R.; Thiemann, T. The Effect of Wastewater Treatment Plants on Retainment of Plastic Microparticles to Enhance Water Quality—A Review. J. Environ. Prot. 2021, 12, 161–195spa
dcterms.bibliographicCitationTaurino, R.; Pozzi, P.; Zanasi, T. Facile characterization of polymer fractions from waste electrical and electronic equipment (WEEE) for mechanical recycling. Waste Manag. 2010, 30, 2601–2607.spa
dcterms.bibliographicCitation. Okoffo, E.D.; O’Brien, S.; O’Brien, J.W.; Tscharke, B.J.; Thomas, K.V. Wastewater treatment plants as a source of plastics in the environment: A review of occurrence, methods for identification, quantification and fate. Environ. Sci. Water Res. Technol. 2019, 5, 1908–1931spa
dcterms.bibliographicCitationSchindler, A.; Doedt, M.; Gezgin, ¸S.; Menzel, J.; Schmölzer, S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J. Therm. Anal. 2017, 129, 833–842spa
dcterms.bibliographicCitationEdo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2019, 259, 113837spa
dcterms.bibliographicCitationBratovcic, A. Degradation of Micro- and Nano-Plastics by Photocatalytic Methods. J. Nanosci. Nanotechnol. Appl. 2017, 3, 1–9.spa
dcterms.bibliographicCitationFranco, A.; Arellano, J.; Albendín, G.; Rodríguez-Barroso, R.; Zahedi, S.; Quiroga, J.; Coello, M. Mapping microplastics in Cadiz (Spain): Occurrence of microplastics in municipal and industrial wastewaters. J. Water Process Eng. 2020, 38, 101596. [spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2020, 263, 128027spa
dcterms.bibliographicCitationSutton, R.; Mason, S.A.; Stanek, S.K.; Willis-Norton, E.; Wren, I.F.; Box, C. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 2016, 109, 230–235.spa
dcterms.bibliographicCitationZiajahromi, S.; Neale, P.A.; Silveira, I.T.; Chua, A.; Leusch, F.D. An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere 2020, 263, 128294.spa
dcterms.bibliographicCitationHabib, R.Z.; al Kindi, R.; Thiemann, T. The Effect of Wastewater Treatment Methods on the Retainment of Plastic Microparticles. In Wastewater Treatment; IntechOpen: London, UK, 2021spa
dcterms.bibliographicCitationCristaldi, A.; Fiore, M.; Zuccarello, P.; Conti, G.O.; Grasso, A.; Nicolosi, I.; Copat, C.; Ferrante, M. Efficiency of Wastewater Treatment Plants (WWTPs) for Microplastic Removal: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8014spa
dcterms.bibliographicCitationAlvim, C.B.; Bes-Piá, M.; Mendoza-Roca, J.-A. Separation and identification of microplastics from primary and secondary effluents and activated sludge from wastewater treatment plants. Chem. Eng. J. 2020, 402, 126293spa
dcterms.bibliographicCitationBitter, H.; Lackner, S. First quantification of semi-crystalline microplastics in industrial wastewaters.Chemosphere 2020, 258, 127388.spa
dcterms.bibliographicCitationHeo, N.W.; Hong, S.H.; Han, G.M.; Hong, S.; Lee, J.; Song, Y.K.; Jang, M.; Shim, W.J. Distribution of small plastic debris in cross-section and high strandline on Heungnam beach, South Korea. Ocean Sci. J. 2013, 48, 225–233.spa
dcterms.bibliographicCitationHidalgo-Ruz, V.; Thiel, M. Distribution and abundance of small plastic debris on beaches in the SE Pacific (Chile): A study supported by a citizen science project. Mar. Environ. Res. 2013, 87–88, 12–18.spa
dcterms.bibliographicCitationBank, M.S. Microplastic in the Environment: Pattern and Process; Springer: Berlin/Heidelberg, Germany, 2022.spa
dcterms.bibliographicCitationShim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2016, 9, 1384–1391spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442.spa
dcterms.bibliographicCitationHe, S.; Jia, M.; Xiang, Y.; Song, B.; Xiong, W.; Cao, J.; Peng, H.; Yang, Y.; Wang, W.; Yang, Z.; et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 2021, 424, 127286.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379spa
dcterms.bibliographicCitationBitter, H.; Lackner, S. Fast and easy quantification of semi-crystalline microplastics in exemplary environmental matrices by differential scanning calorimetry (DSC). Chem. Eng. J. 2021, 423, 129941spa
dcterms.bibliographicCitation. Majewsky, M.; Bitter, H.; Eiche, E.; Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 2016, 568, 507–511spa
dcterms.bibliographicCitationMansa, R.; Zou, S. Thermogravimetric analysis of microplastics: A mini review. Environ. Adv. 2021, 5, 100117.spa
dcterms.bibliographicCitationChialanza, M.R.; Sierra, I.; Parada, A.P.; Fornaro, L. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry. Environ. Sci. Pollut. Res. 2018, 25, 16767–16775. [spa
dcterms.bibliographicCitationWerme, C.; Codiga, D.; Libby, P.; Carroll; Charlestra, L.; Keay, K. 2020 Outfall Monitoring Overview; Massachusetts Water Resources Authority: Boston, MA, USA, 2021spa
dcterms.bibliographicCitationBirocchi, P.; Dottori, M.; Costa, C.D.G.R.; Leite, J.R.B. Study of three domestic sewage submarine outfall plumes through the use of numerical modeling in the São Sebastião channel, São Paulo state, Brazil. Reg. Stud. Mar. Sci. 2021, 42, 101647.spa
dcterms.bibliographicCitationZiajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99.spa
dcterms.bibliographicCitationShabaka, S.H.; Ghobashy, M.; Marey, R.S. Identification of marine microplastics in Eastern Harbor, Mediterranean Coast of Egypt, using differential scanning calorimetry. Mar. Pollut. Bull. 2019, 142, 494–503spa
dcterms.bibliographicCitationTuran, N.B.; Erkan, H.S.; Engin, G.O. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Saf. Environ. Prot. 2020, 146, 77–84.spa
dcterms.bibliographicCitationChoong, W.S.; Hadibarata, T.; Yuniarto, A.; Tang, K.H.D.; Abdullah, F.; Syafrudin, M.; Al Farraj, D.A.; Al-Mohaimeed, A.M. Characterization of microplastics in the water and sediment of Baram River estuary, Borneo Island. Mar. Pollut. Bull. 2021, 172, 112880spa
dcterms.bibliographicCitationLiu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2020, 146, 106277.spa
dcterms.bibliographicCitationMintenig, S.; Int-Veen, I.; Löder, M.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372.spa
dcterms.bibliographicCitationMahon, A.M.; O’Connell, B.; Healy, M.; O’Connor, I.; Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge: Effects of Treatment. Environ. Sci. Technol. 2016, 51, 810–818.spa
dcterms.bibliographicCitationSiddiqui, M.N.; Gondal, M.A.; Redhwi, H.H. Identification of different type of polymers in plastics waste. J. Environ. Sci. Health Part A 2008, 43, 1303–1310.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/su14094920
dc.subject.keywordsEfficiencyspa
dc.subject.keywordsWastewater treatment plantsspa
dc.subject.keywordsMicroplasticsspa
dc.subject.keywordsPollutionspa
dc.subject.keywordsRemovalspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.