Mostrar el registro sencillo del ítem

dc.contributor.authorGil-Gonzalez, Walter
dc.contributor.authorGarces, Alejandro
dc.contributor.authorMontoya, Oscar Danilo
dc.date.accessioned2023-07-21T20:49:32Z
dc.date.available2023-07-21T20:49:32Z
dc.date.issued2019
dc.date.submitted2023
dc.identifier.citationGil-González, W., Garcés, A., & Montoya, O. D. (2019, November). Mitigating fluctuations of wind power generation using superconducting magnetic energy storage: a passivity-based approach. In 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (pp. 1-6). IEEE.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12387
dc.description.abstractAbstract This paper presents the control of the active and reactive power of a superconducting magnetic energy storage (SMES) system for compensating fluctuations of a power system with high penetration of wind energy during extreme scenarios of wind gusts. The wind energy conversion system (WECS) is a Type-A turbine with squirrel cage induction generator (SCIG) and a capacitor bank. A passivity-based proportional-integral control (PI-PBC) is used that controls the power transfer of the SMES system to the power grid. The proposed controller is designed with two main objectives: First, to deliver (or absorb) a suitable active power to (or from) the power system, and second, to regulate the voltage of the WECS. The proposed PI-PBC guarantees asymptotically stability in closed-loop and exploits the advantages of the proportional-integral (PI) actions. Also, it presents a superior performance when it is compared to a conventional PI controller and a proportional feedback linearization controller. Simulation results carried-out in MATLAB/SIMULINK demonstrate the advantages of the proposed methodology. © 2019 IEEE.spa
dc.format.extent7 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2019 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2019spa
dc.titleMitigating fluctuations of wind power generation using superconducting magnetic energy storage: A passivity-based approachspa
dcterms.bibliographicCitationRahimi, M., Parniani, M. Dynamic behavior and transient stability analysis of fixed speed wind turbines (2009) Renewable Energy, 34 (12), pp. 2613-2624. Cited 46 times. doi: 10.1016/j.renene.2009.06.019spa
dcterms.bibliographicCitationAly, M.M., Abdel-Akher, M., Said, S.M., Senjyu, T. A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support (2016) International Journal of Electrical Power and Energy Systems, 83, pp. 485-494. Cited 58 times. doi: 10.1016/j.ijepes.2016.04.037spa
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Serra, F.M. DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) Journal of Energy Storage, 16, pp. 250-258. Cited 33 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.01.014spa
dcterms.bibliographicCitationKhalid, M., Savkin, A.V. An optimal operation of wind energy storage system for frequency control based on model predictive control (2012) Renewable Energy, 48, pp. 127-132. Cited 69 times. doi: 10.1016/j.renene.2012.03.038spa
dcterms.bibliographicCitationMousavi G, S.M., Faraji, F., Majazi, A., Al-Haddad, K. A comprehensive review of Flywheel Energy Storage System technology (Open Access) (2017) Renewable and Sustainable Energy Reviews, 67, pp. 477-490. Cited 293 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.09.060spa
dcterms.bibliographicCitationGil-González, W., Montoya, O.D. Active and reactive power conditioning using SMES devices with PMW-CSC: A feedback nonlinear control approach (2019) Ain Shams Engineering Journal, 10 (2), pp. 369-378. Cited 10 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.01.001spa
dcterms.bibliographicCitationWang, S., Jin, J. Design and Analysis of a Fuzzy Logic Controlled SMES System (2014) IEEE Transactions on Applied Superconductivity, 24 (5), art. no. 6882187. Cited 27 times. doi: 10.1109/TASC.2014.2348562spa
dcterms.bibliographicCitationLiu, C., Hu, C., Li, X., Chen, Y., Chen, M., Xu, D. Applying SMES to smooth short-term power fluctuations in wind farms (2008) IECON Proceedings (Industrial Electronics Conference), art. no. 4758498, pp. 3352-3357. Cited 21 times. ISBN: 978-142441766-7 doi: 10.1109/IECON.2008.4758498spa
dcterms.bibliographicCitationBhatt, P., Ghoshal, S.P., Roy, R. Coordinated control of TCPS and SMES for frequency regulation of interconnected restructured power systems with dynamic participation from DFIG based wind farm (2012) Renewable Energy, 40 (1), pp. 40-50. Cited 72 times. doi: 10.1016/j.renene.2011.08.035spa
dcterms.bibliographicCitationKinjo, T., Senjyu, T., Urasaki, N., Fujita, H. Terminal-voltage and output-power regulation of wind-turbine generator by series and parallel compensation using SMES (2006) IEE Proceedings: Generation, Transmission and Distribution, 153 (3), pp. 276-282. Cited 70 times. doi: 10.1049/ip-gtd:20045189spa
dcterms.bibliographicCitationShiddiq Yunus, A.M., Abu-Siada, A., Masoum, M.A.S. Improvement of LVRT capability of variable speed wind turbine generators using SMES unit (2011) 2011 IEEE PES Innovative Smart Grid Technologies, ISGT Asia 2011 Conference: Smarter Grid for Sustainable and Affordable Energy Future, art. no. 6167122. Cited 22 times. ISBN: 978-145770875-6 doi: 10.1109/ISGT-Asia.2011.6167122spa
dcterms.bibliographicCitationLin, X., Lei, Y. Coordinated Control Strategies for SMES-Battery Hybrid Energy Storage Systems (2017) IEEE Access, 5, art. no. 8064633, pp. 23452-23465. Cited 50 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2017.2761889spa
dcterms.bibliographicCitationGolestan, S., Guerrero, J.M., Vasquez, J.C. Three-Phase PLLs: A Review of Recent Advances (2017) IEEE Transactions on Power Electronics, 32 (3), art. no. 7467498, pp. 1894-1907. Cited 512 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=63 doi: 10.1109/TPEL.2016.2565642spa
dcterms.bibliographicCitationMontoya, O.D., Garcés, A., Espinosa-Pérez, G. A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (Open Access) (2018) Journal of Energy Storage, 16, pp. 259-268. Cited 31 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.01.018spa
dcterms.bibliographicCitationOrtega, R., Van der Schaft, A., Maschke, B., Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems (Open Access) (2002) Automatica, 38 (4), pp. 585-596. Cited 1305 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/S0005-1098(01)00278-3spa
dcterms.bibliographicCitationPérez, M., Ortega, R., Espinoza, J.R. Passivity-Based PI Control of Switched Power Converters (Open Access) (2004) IEEE Transactions on Control Systems Technology, 12 (6), pp. 881-890. Cited 109 times. doi: 10.1109/TCST.2004.833628spa
dcterms.bibliographicCitationAranovskiy, S., Ortega, R., Cisneros, R. A robust PI passivity-based control of nonlinear systems and its application to temperature regulation (2016) International Journal of Robust and Nonlinear Control, 26 (10), pp. 2216-2231. Cited 9 times. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1239 doi: 10.1002/rnc.3404spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/ROPEC48299.2019.9057111
dc.subject.keywordsAsynchronous Generators;spa
dc.subject.keywordsPowerpoint;spa
dc.subject.keywordsEnergy Conversionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.