Mostrar el registro sencillo del ítem

dc.contributor.authorHernández-Fernández, Joaquín
dc.contributor.authorCano, Heidis
dc.contributor.authorReyes, Ana Fonseca
dc.date.accessioned2023-07-19T12:55:06Z
dc.date.available2023-07-19T12:55:06Z
dc.date.issued2023-04-02
dc.date.submitted2023-07
dc.identifier.citationHernández-Fernández, J.; Cano, H.; Reyes, A.F. Valoration of the Synthetic Antioxidant Tris-(Diterbutyl- henol)-Phosphite (Irgafos P-168) from Industrial Wastewater and Application in Polypropylene Matrices to Minimize Its Thermal Degradation. Molecules 2023, 28, 3163. https://doi.org/10.3390/molecules28073163spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12157
dc.description.abstractIndustrial wastewater from petrochemical processes is an essential source of the synthetic phenolic phosphite antioxidant (Irgafos P-168), which negatively affects the environment. For the determination and analysis of Irgafos P-168, DSC, HPLC-MS, and FTIR methodologies were used. Solid phase extraction (SPE) proved to be the best technique for extracting Irgafos from wastewater. HPLC-MS and SPE determined the repeatability, reproducibility, and linearity of the method and the SPE of the standards and samples. The relative standard deviations, errors, and correlation coefficients for the repeatability and reproducibility of the calibration curves were less than 4.4% and 4.2% and greater than 0.99955, respectively. The analysis of variance (ANOVA), using the Fisher method with confidence in 95% of the data, did not reveal significant differences between the mentioned parameters. The removal of the antioxidant from the wastewater by SPE showed recovery percentages higher than 91.03%, and the chemical characterization of this antioxidant by FTIR spectroscopy, DSC, TGA, and MS showed it to be structurally the same as the Irgafos P-168 molecule. The recovered Irgafos was added to the polypropylene matrix, significantly improving its oxidation times. An OIT analysis, performed using DSC, showed that the recovered Irgafos-blended polypropylene (PP) demonstrated oxidative degradation at 8 min. With the addition of the Irgafos, the oxidation time was 13 min. This increases the polypropylene’s useful life and minimizes the environmental impact of the wastewater.spa
dc.format.extent21 páginas
dc.format.mediumPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMolecules - Vol. 28 No. 7 (2023)spa
dc.titleValoration of the Synthetic Antioxidant Tris-(Diterbutyl-Phenol)-Phosphite (Irgafos P-168) from Industrial Wastewater and Application in Polypropylene Matrices to Minimize Its Thermal Degradationspa
dcterms.bibliographicCitationHazarika, M.; Dixit, U.S.; Davim, J.P. History of Production and Industrial Engineering through Contributions of Stalwarts. Manuf. Eng. Educ. 2019, 1–29.spa
dcterms.bibliographicCitationCao, L.; Lin, C.; Gao, Y.; Sun, C.; Xu, L.; Zheng, L.; Zhang, Z. Health risk assessment of trace elements exposure through the soil-plant (maize)-human contamination pathway near a petrochemical industry complex, Northeast China. Environ. Pollut. 2020, 263, 114414.spa
dcterms.bibliographicCitationGebbink, W.A.; van Leeuwen, S.P. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environ. Int. 2020, 137, 105583.spa
dcterms.bibliographicCitationNie, M.; Nie, H.; He, M.; Lin, Y.; Wang, L.; Jin, P.; Zhang, S. Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale. J. Environ. Manag. 2016, 173, 34–40. [spa
dcterms.bibliographicCitationKumar, L.; Chugh, M.; Kumar, S.; Kumar, K.; Sharma, J.; Bharadvaja, N. Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process Saf. Environ. Prot. 2022, 159, 362–375. [CrossRef] 6. van Oosterhout, L.; Dijkstra, H.; Borst, D.; Duijndam, S.; Rehdanz, K.; van Beukering, P. Triggering sustainable plastics consumption behavior: Identifying consumer profiles across Europe and designing strategies to engage them. Sustain. Prod. Consum. 2023, 36, 148–160. [spa
dcterms.bibliographicCitationPivato, A.F.; Miranda, G.M.; Prichula, J.; Lima, J.E.; Ligabue, R.A.; Seixas, A.; Trentin, D.S. Hydrocarbon-based plastics: Progress and perspectives on consumption and biodegradation by insect larvae. Chemosphere 2022, 293, 133600.spa
dcterms.bibliographicCitationSridharan, S.; Kumar, M.; Saha, M.; Kirkham, M.; Singh, L.; Bolan, N.S. The polymers and their additives in particulate plastics: What makes them hazardous to the fauna? Sci. Total Environ. 2022, 824, 153828spa
dcterms.bibliographicCitationMarcato, B.; Guerra, S.; Vianello, M.; Scalia, S. Migration of antioxidant additives from various polyolefinic plastics into oleaginous vehicles. Int. J. Pharm. 2003, 257, 217–225spa
dcterms.bibliographicCitationLiao, B.; Ji, G.; Cheng, L. Profling of microbial communities in a bioreactor for treating hydrocarbon-sulfde-containing wastewater. J. Environ. Sci. 2008, 20, 897–899spa
dcterms.bibliographicCitationGoswami, L.; Manikandan, N.A.; Dolman, B.; Pakshirajan, K.; Pugazhenthi, G. Biological treatment of wastewater containing a mixture of polycyclic aromatic hydrocarbons using the oleaginous bacterium Rhodococcus opacus. J. Clean. Prod. 2018, 196, 1282–1291.spa
dcterms.bibliographicCitationFernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920.spa
dcterms.bibliographicCitationChaudhry, A.; Bashir, F.; Adil, S.F.; Saif, S.; Shaik, M.R.; Hatshan, M.R.; Shaik, B. Ascorbic acid-mediated Fe/Cu nanoparticles and their application for removal of COD and phenols from industrial wastewater. J. King Saud Univ.-Sci. 2022, 34, 101927spa
dcterms.bibliographicCitationtheir application for removal of COD and phenols from industrial wastewater. J. King Saud Univ.-Sci. 2022, 34, 101927. [CrossRef] 14. Lwanga, E.H.; van Roshum, I.; Munhoz, D.R.; Meng, K.; Rezaei, M.; Goossens, D.; Bijsterbosch, J.; Alexandre, N.; Oosterwijk, J.; Krol, M.; et al. Microplastic appraisal of soil, water, ditch sediment and airborne dust: The case of agricultural systems. Environ. Pollut. 2023, 316, 120513spa
dcterms.bibliographicCitationFranco, A.; Arellano, J.; Albendín, G.; Rodríguez-Barroso, R.; Quiroga, J.; Coello, M. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442spa
dcterms.bibliographicCitationAllen, N.S.; Edge, M.; Hussain, S. Perspectives on yellowing in the degradation of polymer materials: Inter-relationship of structure, mechanisms and modes of stabilisation. Polym. Degrad. Stab. 2022, 201, 109977.spa
dcterms.bibliographicCitationCifuentes-Cabezas, M.; Mendoza-Roca, J.A.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Management of reject streams from hybrid membrane processes applied to phenolic compounds removal from olive mill wastewater by adsorption/desorption and biological processes. J. Water Process Eng. 2022, 50, 103208.spa
dcterms.bibliographicCitationAlsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2021, 56, 2245–2251.spa
dcterms.bibliographicCitationIrshidat, M.R.; Al-Nuaimi, N.; Rabie, M. Hybrid effect of carbon nanotubes and polypropylene microfibers on fire resistance, thermal characteristics and microstructure of cementitious composites. Constr. Build. Mater. 2021, 266, 121154.spa
dcterms.bibliographicCitationNascimento, E.M.D.; Eiras, D.; Pessan, L.A. Effect of thermal treatment on impact resistance and mechanical properties of polypropylene/calcium carbonate nanocomposites. Compos. Part B Eng. 2016, 91, 228–234. [spa
dcterms.bibliographicCitationPavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385.spa
dcterms.bibliographicCitationHernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027. [spa
dcterms.bibliographicCitationHernández-Fernandez, J.; Lopez-Martinez, J.; Puello-Polo, E. Recovery of (Z)-13-Docosenamide from Industrial Wastewater and Its Application in the Production of Virgin Polypropylene to Improve the Coefficient of Friction in Film Type Applications. Sustainability 2023, 15, 1247.spa
dcterms.bibliographicCitationJoaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of Bisphenol A and Four New Analogs from Industrial Wastewater Treatment Plants in the Production Processes of Polypropylene and Polyethylene Terephthalate in South America. Sustainability 2022, 14, 10919.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808spa
dcterms.bibliographicCitationHernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. [spa
dcterms.bibliographicCitationHernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148.spa
dcterms.bibliographicCitationLavrenov, A.V.; Saifulina, L.F.; Buluchevskii, E.A.; Bogdanets, E.N. Propylene production technology: Today and tomorrow. Catal. Ind. 2015, 7, 175–187spa
dcterms.bibliographicCitationTähkämö, L.; Ojanperä, A.; Kemppi, J.; Deviatkin, I. Life cycle assessment of renewable liquid hydrocarbons, propylene, and polypropylene derived from bio-based waste and residues: Evaluation of climate change impacts and abiotic resource depletion potential. J. Clean. Prod. 2022, 379, 134645.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [spa
dcterms.bibliographicCitationPetrovics, N.; Kirchkeszner, C.; Tábi, T.; Magyar, N.; Székely, I.K.; Szabó, B.S.; Nyiri, Z.; Eke, Z. Effect of temperature and plasticizer content of polypropylene and polylactic acid on migration kinetics into isooctane and 95 v/v% ethanol as alternative fatty food simulants. Food Packag. Shelf Life 2022, 33, 100916spa
dcterms.bibliographicCitationHermabessiere, L.; Receveur, J.; Himber, C.; Mazurais, D.; Huvet, A.; Lagarde, F.; Lambert, C.; Paul-Pont, I.; Dehaut, A.; Jezequel, R.; et al. An Irgafos® 168 story: When the ubiquity of an additive prevents studying its leaching from plastics. Sci. Total Environ. 2020, 749, 141651.spa
dcterms.bibliographicCitation. Vera, P.; Canellas, E.; Su, Q.-Z.; Mercado, D.; Nerín, C. Migration of volatile substances from recycled high density polyethylene to milk products. Food Packag. Shelf Life 2023, 35, 101020.spa
dcterms.bibliographicCitationKung, H.-C.; Hsieh, Y.-K.; Huang, B.-W.; Cheruiyot, N.K.; Chang-Chien, G.-P. An Overview: Organophosphate Flame Retardants in the Atmosphere. Aerosol Air Qual. Res. 2022, 22, 220148spa
dcterms.bibliographicCitationOnoja, S.; Nel, H.A.; Abdallah, M.A.-E.; Harrad, S. Microplastics in freshwater sediments: Analytical methods, temporal trends, and risk of associated organophosphate esters as exemplar plastics additives. Environ. Res. 2022, 203, 111830.spa
dcterms.bibliographicCitationXiao, L.; Zheng, Z.; Irgum, K.; Andersson, P.L. Studies of Emission Processes of Polymer Additives into Water Using Quartz Crystal Microbalance—A Case Study on Organophosphate Esters. Environ. Sci. Technol. 2020, 54, 4876–4885.spa
dcterms.bibliographicCitationLi, A.; Zheng, G.; Chen, N.; Xu, W.; Li, Y.; Shen, F.; Wang, S.; Cao, G.; Li, J. Occurrence Characteristics and Ecological Risk Assessment of Organophosphorus Compounds in a Wastewater Treatment Plant and Upstream Enterprises. Water 2022, 14, 3942.spa
dcterms.bibliographicCitationLiu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719.spa
dcterms.bibliographicCitationDương, T.-B.; Dwivedi, R.; Bain, L.J. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol. Appl. Pharmacol. 2023, 461, 116386.spa
dcterms.bibliographicCitationChen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22spa
dcterms.bibliographicCitationSimoneau, C.; Van Den Eede, L.; Valzacchi, S. Identification and quantification of the migration of chemicals from plastic baby bottles used as substitutes for polycarbonate. Food Addit. Contam. Part A 2012, 29, 469–480.spa
dcterms.bibliographicCitationFouyer, K.; Lavastre, O.; Rondeau, D. Direct Monitoring of the Role Played by a Stabilizer in a Solid Sample of Polymer Using Direct Analysis in Real Time Mass Spectrometry: The Case of Irgafos 168 in Polyethylene. Anal. Chem. 2012, 84, 8642–8649.spa
dcterms.bibliographicCitationSommers, C.H.; Sheen, S. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing. Food Microbiol. 2015, 50, 1–4spa
dcterms.bibliographicCitationFDA. Irradiation in the Production, Processing and Handling of Food. Final Rule, November 2012. Available online: https://www. researchgate.net/publication/284923753_Irradiation_in_the_production_processing_and_handling_of_food_Final_rule (accessed on 3 March 2022).spa
dcterms.bibliographicCitationYang, Y.P.; Hu, C.; Zhong, H.; Wang, Z.Y.; Zeng, G.F. Degradation of Irgafos 168 and determination of its degra-dation products. Mod. Food Sci. Technol. 2016, 32, 304–309.spa
dcterms.bibliographicCitationJames, B.D.; De Vos, A.; Aluwihare, L.I.; Youngs, S.; Ward, C.P.; Nelson, R.K.; Michel, A.P.M.; Hahn, M.E.; Reddy, C.M. Divergent Forms of Pyroplastic: Lessons Learned from the M/V X-Press Pearl Ship Fire. ACS Environ. Au 2022, 2, 467–479spa
dcterms.bibliographicCitationZhao, F.; Wang, P.; Lucardi, R.; Su, Z.; Li, S. Natural Sources and Bioactivities of 2,4-Di-Tert-Butylphenol and Its Analogs. Toxins 2020, 12, 35. [spa
dcterms.bibliographicCitationShi, J.; Xu, C.; Xiang, L.; Chen, J.; Cai, Z. Tris(2,4-di-tert-butylphenyl)phosphate: An Unexpected Abundant Toxic Pollutant Found in PM2.5. Environ. Sci. Technol. 2020, 54, 10570–10576.spa
dcterms.bibliographicCitationLuque-García, J.; de Castro, M.L. Ultrasound: A powerful tool for leaching. TrAC Trends Anal. Chem. 2003, 22, 41–47.spa
dcterms.bibliographicCitationLama-Muñoz, A.; Contreras, M.D.M. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022, 11, 3671spa
dcterms.bibliographicCitationSachon, E.; Matheron, L.; Clodic, G.; Blasco, T.; Bolbach, G. MALDI TOF-TOF characterization of a light stabilizer polymer contaminant from polypropylene or polyethylene plastic test tubes. J. Mass Spectrom. 2010, 45, 43–50.spa
dcterms.bibliographicCitationFeng, G.; Wang, X.; Zhang, D.; Xiao, X.; Qian, K. Fabrication of bilayer antioxidant microcapsule and evaluation of its efficiency in stabilization of polypropylene. Mater. Res. Express 2019, 6, 125327spa
dcterms.bibliographicCitationFarajzadeh, M.A.; Goushjuii, L.; Ranji, A.; Feyz, E. Spectrophotometric determination of Irgafos 168 in polymers after different sample preparation procedures. Microchim. Acta 2007, 159, 263–268spa
dcterms.bibliographicCitationFiorio, R.; D’Hooge, D.R.; Ragaert, K.; Cardon, L. A Statistical Analysis on the Effect of Antioxidants on the Thermal-Oxidative Stability of Commercial Mass- and Emulsion-Polymerized ABS. Polymers 2018, 11, 25.spa
dcterms.bibliographicCitationLi, B.; Wang, Z.-W.; Lin, Q.-B.; Hu, C.-Y.; Su, Q.-Z.; Wu, Y.-M. Determination of Polymer Additives-Antioxidants, Ultraviolet Stabilizers, Plasticizers and Photoinitiators in Plastic Food Package by Accelerated Solvent Extraction Coupled with HighPerformance Liquid Chromatography. J. Chromatogr. Sci. 2015, 53, 1026–1035.spa
dcterms.bibliographicCitationRodil, R.; Quintana, J.B.; Basaglia, G.; Pietrogrande, M.C.; Cela, R. Determination of synthetic phenolic antioxidants and their metabolites in water samples by downscaled solid-phase extraction, silylation and gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 6428–6435.spa
dcterms.bibliographicCitationHernández-Fernández, J.; Ortega-Toro, R.; López-Martinez, J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2023, 28, 2003spa
dcterms.bibliographicCitationBadri, K.; Redwan, A. Molecular Characterization of Synthetic Polymers by Means of Liquid Chromatography. In Physical Chemistry of Macromolecules: Macro to Nanoscales; Apple Academic Press: Bratislava, Slovakia, 2014; pp. 237–348spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/molecules28073163
dc.subject.keywordsValorationspa
dc.subject.keywordsSynthetic antioxidantspa
dc.subject.keywordsIrgafos P-168spa
dc.subject.keywordsIndustrial wastewaterspa
dc.subject.keywordsPolypropylenespa
dc.subject.keywordsThermal degradationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.