Mostrar el registro sencillo del ítem

dc.contributor.authorCampillo, J.
dc.contributor.authorDominguez-Jimenez, J.A.
dc.contributor.authorAriza, H.
dc.contributor.authorPayares, E.D.
dc.contributor.authorMartinez-Santos, J.C.
dc.date.accessioned2023-07-18T19:31:17Z
dc.date.available2023-07-18T19:31:17Z
dc.date.issued2020
dc.date.submitted2023
dc.identifier.citationCampillo, J., Dominguez-Jimenez, J. A., Ariza, H., Payares, E. D., & Martinez-Santos, J. C. (2020, December). Distributed energy resources parameter monitoring in microgrids using blockchain and edge computing. In 2020 IEEE PES Transactive Energy Systems Conference (TESC) (pp. 1-5). IEEE.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12136
dc.description.abstractAn increased share of distributed renewable energy sources requires flexible tools for providing reliable and cheap electricity. Smart meters provide information at the consumer level, which could be used as the main source for real-time energy micro-transactions, however, one of the main concerns about direct transactions is information security. Conventional electricity markets rely on centralized information exchange, nevertheless, when intra-day, distributed, electricity consumption and production exchanges are required between customers, this approach might not be enough. This paper presents a proof-of-concept for using Blockchain as a tool for managing the operational transactions in a DC microgrid. The distributed nature of this technology provides an inherently safer approach, by providing an immutable database for transaction history. One of the challenges of using this technology, however, is the required computing power at the nodes and the limited capacity available in the smart meter. To overcome these issues, the authors used a distributed computing technology,-edge computing-, where computation and storage are located closer to the customer, to improve response times by handling the required computational tasks of the Blockchain tool. This approach proved not only to be practically viable but also, offers important insights about the scalability and capabilities of the technology. © 2020 IEEE.spa
dc.format.extent5 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.source2020 IEEE PES Transactive Energy Systems Conference, TESC 2020spa
dc.titleDistributed Energy Resources Parameter Monitoring in Microgrids Using Blockchain and Edge Computingspa
dcterms.bibliographicCitation(2019) World Energy Outlook 2018. Cited 440 times. I. E. Agency. IEA, Tech. Rep.spa
dcterms.bibliographicCitationYu, X., Xue, Y. Smart Grids: A Cyber-Physical Systems Perspective (2016) Proceedings of the IEEE, 104 (5), art. no. 7433937, pp. 1058-1070. Cited 490 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5 doi: 10.1109/JPROC.2015.2503119spa
dcterms.bibliographicCitationBorlase, S. (2016) Smart Grids: Infrastructure, Technology, and Solutions.. Cited 177 times. CRC Pressspa
dcterms.bibliographicCitationScheffran, J., Felkers, M., Froese, R. Economic growth and the global energy demand (2020) Green Energy to Sustainability: Strategies for Global Industries, pp. 3-44. Cited 17 times. https://www.wiley.com/en-us/Green+Energy+to+Sustainability%3A+Strategies+for+Global+Industries-p-9781119152026 ISBN: 978-111915205-7; 978-111915202-6 doi: 10.1002/9781119152057.ch1spa
dcterms.bibliographicCitationFarrokhabadi, M., Lagos, D., Wies, R.W., Paolone, M., Liserre, M., Meegahapola, L., Kabalan, M., (...), Hatziargyriou, N. Microgrid Stability Definitions, Analysis, and Examples (2020) IEEE Transactions on Power Systems, 35 (1), art. no. 8750828, pp. 13-29. Cited 325 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2019.2925703spa
dcterms.bibliographicCitationMackay, L., Hailu, T., Ramirez-Elizondo, L., Bauer, P. Towards a DC distribution system-opportunities and challenges (2015) 2015 IEEE 1st International Conference on Direct Current Microgrids, ICDCM 2015, art. no. 7152041, pp. 215-220. Cited 31 times. ISBN: 978-147999879-1 doi: 10.1109/ICDCM.2015.715204spa
dcterms.bibliographicCitationMutarraf, M.U., Terriche, Y., Niazi, K.A.K., Vasquez, J.C., Guerrero, J.M. Energy storage systems for shipboard microgrids—A review (2018) Energies, 11 (12), art. no. 3492. Cited 81 times. https://www.mdpi.com/1996-1073/11/12 doi: 10.3390/en11123492spa
dcterms.bibliographicCitationMarzal, S., Salas, R., González-Medina, R., Garcerá, G., Figueres, E. Current challenges and future trends in the field of communication architectures for microgrids (Open Access) (2018) Renewable and Sustainable Energy Reviews, Part 3 82, pp. 3610-3622. Cited 87 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2017.10.101spa
dcterms.bibliographicCitation(2020) Global co2 Emissions in 2019. Cited 109 times. I. E. Agency. Feb. https://www.iea.org/articles/global-co2-emissions-in-2019spa
dcterms.bibliographicCitation(2020) Electric Vehicles. Cited 16 times. Feb. https://www.iea.org/fuels-and-technologies/electric-vehiclesspa
dcterms.bibliographicCitationGallo, A.B., Simões-Moreira, J.R., Costa, H.K.M., Santos, M.M., Moutinho dos Santos, E. Energy storage in the energy transition context: A technology review (2016) Renewable and Sustainable Energy Reviews, 65, pp. 800-822. Cited 393 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.07.028spa
dcterms.bibliographicCitationHeitel, S., Seddig, K., Vilchez, J.J.G., Jochem, P. Global electric car market deployment considering endogenous battery price development (Open Access) (2019) Technological Learning in the Transition to a Low-Carbon Energy System: Conceptual Issues, Empirical Findings, and Use, in Energy Modeling, pp. 281-305. Cited 11 times. http://www.sciencedirect.com/science/book/9780128187623 ISBN: 978-012818762-3 doi: 10.1016/B978-0-12-818762-3.00015-7spa
dcterms.bibliographicCitationStevenson, M. Lithium-ion battery packs now 209perkwh;willfallto100 by 2025: Bloomberg analysis (2017) Green Car Reports. Cited 4 times.spa
dcterms.bibliographicCitationWarner, J.T. Lithium-ion battery chemistries: A primer (2019) Lithium-Ion Battery Chemistries: A Primer, pp. 1-353. Cited 28 times. https://www.sciencedirect.com/book/9780128147788 ISBN: 978-012814779-5; 978-012814778-8 doi: 10.1016/C2017-0-02140-7spa
dcterms.bibliographicCitationCardenas, A., Guzman, C., Chemsi, M., Agbossou, K. Development of AC microgrid test bench with Hydrogen fuel cell and renewable sources (2016) Asia-Pacific Power and Energy Engineering Conference, APPEEC, 2016-December, art. no. 7779534, pp. 397-402. Cited 3 times. http://ieeexplore.ieee.org/xpl/conferences.jsp ISBN: 978-150905418-3 doi: 10.1109/APPEEC.2016.7779534spa
dcterms.bibliographicCitationCampillo, J., Barberis, S., Traverso, A., Kyprianidis, K., Vassileva, I. Open-source modelling and simulation of microgrids and active distribution networks (2015) Sustainable Places 2015, p. 91. Cited 3 times.spa
dcterms.bibliographicCitationUnamuno, E., Barrena, J.A. Hybrid ac/dc microgrids - Part I: Review and classification of topologies (2015) Renewable and Sustainable Energy Reviews, 52, pp. 1251-1259. Cited 237 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2015.07.194 View at Publisherspa
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025spa
dcterms.bibliographicCitationBayati, N., Hajizadeh, A., Soltani, M. Protection in DC microgrids: A comparative review (Open Access) (2018) IET Smart Grid, 1 (3), pp. 66-75. Cited 125 times. http://digital-library.theiet.org/content/journals/iet-stg doi: 10.1049/iet-stg.2018.0035spa
dcterms.bibliographicCitationZhang, X., Chen, Y., Mollet, Y., Yang, J., Gyselinck, J. An accurate discrete current controller for high-speed PMSMS/GS in flywheel applications (Open Access) (2020) Energies, 13 (6), art. no. 1458. Cited 3 times. https://www.mdpi.com/1996-1073/13/6/1458 doi: 10.3390/en13061458spa
dcterms.bibliographicCitationWu, R., Sansavini, G. (2020) Integrating Reliability and Resilience to Support Microgrid Designspa
dcterms.bibliographicCitationJayamaha, D.K.J.S., Lidula, N.W.A., Rajapakse, A.D. Protection and grounding methods in DC microgrids: Comprehensive review and analysis (2020) Renewable and Sustainable Energy Reviews, 120, art. no. 109631. Cited 28 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2019.109631spa
dcterms.bibliographicCitationCagnano, A., De Tuglie, E., Mancarella, P. Microgrids: Overview and guidelines for practical implementations and operation (2020) Applied Energy, 258, art. no. 114039. Cited 151 times. https://www.journals.elsevier.com/applied-energy doi: 10.1016/j.apenergy.2019.114039spa
dcterms.bibliographicCitationCampillo, J., Dahlquist, E., Wallin, F., Vassileva, I. Is real-time electricity pricing suitable for residential users without demand-side management? (2016) Energy, 109, pp. 310-325. Cited 53 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.04.105spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/TESC50295.2020.9656872
dc.subject.keywordsMicrogrid;spa
dc.subject.keywordsDC-DC Converter;spa
dc.subject.keywordsElectric Potentialspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.