Mostrar el registro sencillo del ítem

dc.contributor.authorDominguez, J.A.
dc.contributor.authorRueda, L.
dc.contributor.authorHenao, N.
dc.contributor.authorAgbossou, K.
dc.contributor.authorCampillo, J.
dc.date.accessioned2023-07-18T19:22:50Z
dc.date.available2023-07-18T19:22:50Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationDominguez, J. A., Rueda, L., Henao, N., Agbossou, K., & Campillo, J. (2022, October). Distributed co-simulation for smart homes energy management in the presence of electrical thermal storage. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12122
dc.description.abstractDistributed generation and energy storage technologies have helped SmartGrid projects gain great momentum over the last decade. However, despite a large number of pilot and demonstration projects, low-level information is often unavailable. Therefore, tools for defining and building different operation scenarios are required. These tools can facilitate adopting novel approaches to multi-domain energy management. This paper proposes a distributed, flexible co-simulation framework to integrate simulators from separate domains and platforms. Particularly, the proposed scheme enables the development of hybrid thermal-electric systems for smart buildings. In this study, an object-oriented approach to modeling electrical thermal storage (ETS) units is also suggested. The evaluation process is carried out using real-world data. A case study is practiced by designing a residential agent that performs model predictive control (MPC) of residential heating load in the presence of ETS. The results show that proper integration of ETS into Home Energy Management Systems (HEMSs) can achieve economic savings of up to 45 %. The findings of this study demonstrate ETS's high potential for reducing customer bills while satisfying users' comfort. Furthermore, they recommend practical strategies for short-term planning of smart grids by increasing their flexibility based on ETS-integrated Demand Response (DR) programs. © 2022 IEEE.spa
dc.format.extent6 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIECON Proceedings (Industrial Electronics Conference)spa
dc.titleDistributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storagespa
dcterms.bibliographicCitationAgency, I.E. World Energy Outlook 2019 (2019) Tech. Rep. Cited 1387 times.spa
dcterms.bibliographicCitation(2021) Global Energy Review 2021, p. 36. Cited 650 times.spa
dcterms.bibliographicCitationMancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models (2014) Energy, 65, pp. 1-17. Cited 997 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.10.041spa
dcterms.bibliographicCitationSchiera, D.S., Minuto, F.D., Bottaccioli, L., Borchiellini, R., Lanzini, A. Analysis of Rooftop Photovoltaics Diffusion in Energy Community Buildings by a Novel GIS- and Agent-Based Modeling Co-Simulation Platform (2019) IEEE Access, 7, art. no. 8756277, pp. 93404-93432. Cited 35 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2019.2927446spa
dcterms.bibliographicCitationBharati, A.K., Ajjarapu, V. A Scalable Multi-Timescale T&D Co-Simulation Framework using HELICS (2021) 2021 IEEE Texas Power and Energy Conference, TPEC 2021, art. no. 9384985. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9384868 ISBN: 978-172818612-2 doi: 10.1109/TPEC51183.2021.9384985spa
dcterms.bibliographicCitationZhang, J., Daily, J., Mast, R.A., Palmintier, B., Krishnamurthy, D., Elgindy, T., Florita, A., (...), Hodge, B.-M. Development of HELICS-based high-performance cyber-physical co-simulation framework for distributed energy resources applications (2020) 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2020, art. no. 9302977. Cited 4 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9302911 ISBN: 978-172816127-3 doi: 10.1109/SmartGridComm47815.2020.9302977spa
dcterms.bibliographicCitationNicolai, A., Paepcke, A. (2017) Co-Simulation between Detailed Building Energy Performance Simulation and Modelica Hvac Component Models, p. 72. Julspa
dcterms.bibliographicCitationKwak, Y., Huh, J.-H., Jang, C. Development of a model predictive control framework through real-time building energy management system data (2015) Applied Energy, 155, pp. 1-13. Cited 81 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.05.096spa
dcterms.bibliographicCitationHong, T., Sun, H., Chen, Y., Taylor-Lange, S.C., Yan, D. An occupant behavior modeling tool for co-simulation (2016) Energy and Buildings, 117, pp. 272-281. Cited 142 times. doi: 10.1016/j.enbuild.2015.10.033spa
dcterms.bibliographicCitationCutler, D., Kwasnik, T., Balamurugan, S., Elgindy, T., Swaminathan, S., Maguire, J., Christensen, D. Co-simulation of transactive energy markets: A framework for market testing and evaluation (2021) International Journal of Electrical Power and Energy Systems, 128, art. no. 106664. Cited 6 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106664spa
dcterms.bibliographicCitationAwad, A., Bazan, P., German, R. A House Appliances-Level Co-simulation Framework for Smart Grid Applications (2019) EAI/Springer Innovations in Communication and Computing, pp. 303-317. springer.com/series/15427 doi: 10.1007/978-3-319-92378-9_19spa
dcterms.bibliographicCitationGusain, D., Cvetković, M., Palensky, P. Simplifying multi-energy system co-simulations using ENERGYSIM (Open Access) (2022) SoftwareX, 18, art. no. 101021. http://www.journals.elsevier.com/softwarex/ doi: 10.1016/j.softx.2022.101021spa
dcterms.bibliographicCitationErdogan, N., Kucuksari, S., Cali, U. Co-Simulation of Optimal EVSE and Techno-Economic System Design Models for Electrified Fleets (2022) IEEE Access, 10, pp. 18988-18997. Cited 7 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2022.3150359spa
dcterms.bibliographicCitationSummers, A., Goes, C., Calzada, D., Jacobs, N., Hossain-Mckenzie, S., Mao, Z. Towards Cyber-Physical Special Protection Schemes: Design and Development of a Co-Simulation Testbed Leveraging SCEPTRE™ (Open Access) (2022) 2022 IEEE Power and Energy Conference at Illinois, PECI 2022. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9744016 ISBN: 978-166540229-3 doi: 10.1109/PECI54197.2022.9744043spa
dcterms.bibliographicCitationZafar, U., Bayhan, S., Sanfilippo, A. Home Energy Management System Concepts, Configurations, and Technologies for the Smart Grid (Open Access) (2020) IEEE Access, 8, art. no. 9126780, pp. 119271-119286. Cited 64 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3005244spa
dcterms.bibliographicCitationBeaudin, M., Zareipour, H. Home energy management systems: A review of modelling and complexity (Open Access) (2015) Renewable and Sustainable Energy Reviews, 45, pp. 318-335. Cited 319 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2015.01.046spa
dcterms.bibliographicCitationSolanki, B.V., Sauter, P.S., Canizares, C.A., Bhattacharya, K., Hohmann, S. (2017) Electric Thermal Storage System Impact on Northern Communities' Microgrids. Cited 2 times. https://publikationen.bibliothek.kit.edu/1000073509spa
dcterms.bibliographicCitationWong, S., Pinard, J.-P. Opportunities for Smart Electric Thermal Storage on Electric Grids with Renewable Energy (2017) IEEE Transactions on Smart Grid, 8 (2), art. no. 7419882, pp. 1014-1022. Cited 41 times. doi: 10.1109/TSG.2016.2526636spa
dcterms.bibliographicCitationFritzson, P. Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach (Open Access) (2014) Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 9781118859124, pp. 1-1223. Cited 225 times. http://www.wiley.com/remtitle.cgi?isbn=111885912X ISBN: 978-111898916-6; 978-111885912-4 doi: 10.1002/9781118989166spa
dcterms.bibliographicCitationCisek, P., Taler, D. Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS) (Open Access) (2019) Energy, 173, pp. 755-771. Cited 14 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2019.02.096spa
dcterms.bibliographicCitationDevia, W., Agbossou, K., Cardenas, A. An evolutionary approach to modeling and control of space heating and thermal storage systems (2021) Energy and Buildings, 234, art. no. 110674. Cited 8 times. https://www.journals.elsevier.com/energy-and-buildings doi: 10.1016/j.enbuild.2020.110674spa
dcterms.bibliographicCitationDiamond, S., Boyd, S. CVXPY: A Python-Embedded Modeling Language for Convex Optimization, p. 5. Cited 31 times.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.1109/IECON49645.2022.9969092
dc.subject.keywordsCo-Simulation;spa
dc.subject.keywordsSmart Grid;spa
dc.subject.keywordsCyber Physical Systemspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.