Mostrar el registro sencillo del ítem

dc.contributor.authorD Sierra-Porta
dc.contributor.authorTarazona-Alvarado, M
dc.contributor.authorVillalba-Acevedo, Jorge
dc.date.accessioned2023-06-02T18:24:07Z
dc.date.available2023-06-02T18:24:07Z
dc.date.issued2023-03-06
dc.date.submitted2023-06-02
dc.identifier.citationD. Sierra-Porta, M. Tarazona-Alvarado, Jorge Villalba-Acevedo. (2023). Quantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modeling. Advances in Space Research, 72(2). https://doi.org/10.1016/j.asr.2023.02.044spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12084
dc.description.abstractCosmic rays measured through neutron monitors on Earth’s surface have a strong correlation with the number of sunspots on the solar photosphere. Other indices that affect the dynamics of the heliosphere and distortions in the Earth’s geomagnetic field also exhibit significant correlations. Typically, studies focus on these indices individually or combine some into a smaller set of estimators. This study uses Structural Equation Modeling to examine relationships between a broad range of parameters of solar dynamics and cosmic ray intensity (measured by the Moscow neutron monitor) across several solar cycles from 1976 to present day. The study also classifies these indices into three distinct contributions: Photosphere, Solar Wind and Terrestrial Geomagnetic Field Distortions. Regression models were built for all solar cycles and the complete cosmic ray series from 1976 to the present, resulting in good estimators with calculated p-values below 0.05 (95% confidence). Relationships among all contributions were determined using their estimators.spa
dc.format.extentPdf
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceAdvances in Space Research - Vol. 72 No. 1 (2023)spa
dc.titleQuantitatively relating cosmic rays intensities from solar activity parameters based on structural equation modelingspa
dcterms.bibliographicCitationAnderson, J.C., Gerbing, D.W., 1988. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 103, 411–423. https://doi.org/10.1037/0033-2909.103.3.411.spa
dcterms.bibliographicCitationAslam, O.P.M., Badruddin, 2017. Study of the geoeffectiveness and galactic cosmic-ray response of VarSITI-ISEST campaign events in solar cycle 24. Sol. Phys. 292, 135. https://doi.org/10.1007/s11207-017- 1160-x.spa
dcterms.bibliographicCitationAxford, W.I., 1965. The modulation of galactic cosmic rays in the interplanetary medium. Planet. Space Sci. 13, 115–130. https://doi.org/ 10.1016/0032-0633(65)90181-9, URL: https://www.sciencedirect.com/science/article/pii/0032063365901819.spa
dcterms.bibliographicCitationBazilevskaya, G.A., Cliver, E.W., Kovaltsov, G.A., Ling, A.G., Shea, M. A., Smart, D.F., Usoskin, I.G., 2014. Solar cycle in the heliosphere and cosmic rays. Space Sci. Rev. 186, 409–435. https://doi.org/10.1007/ s11214-014-0084-0.spa
dcterms.bibliographicCitationBentler, P.M., Bonett, D.G., 1980. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 88, 588–606. https://doi.org/10.1037/0033-2909.88.3.588spa
dcterms.bibliographicCitationBhargawa, A., Singh, A., 2021. Elucidation of some solar parameters observed during solar cycles 21–24. Adv. Space Res. 68, 2643–2660.spa
dcterms.bibliographicCitationByrne, B.M., Shavelson, R.J., Muthe´n, B., 1989. Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychol. Bull. 105, 456–466. https:// doi.org/10.1037/0033-2909.105.3.456spa
dcterms.bibliographicCitationChowdhury, P., Dwivedi, B.N., Ray, P.C., 2011. Solar modulation of galactic cosmic rays during 19–23 solar cycles. New Astron. 16, 430– 438. https://doi.org/10.1016/j.newast.2011.03.003, URL: https:// www.sciencedirect.com/science/article/pii/S1384107611000248spa
dcterms.bibliographicCitationCliver, E.W., Boriakoff, V., Bounar, K.H., 1996. The 22-year cycle of geomagnetic and solar wind activity. J. Geophys. Res.: Space Phys. 101, 27091–27109. https://doi.org/10.1029/96JA02037, URL: https:// onlinelibrary.wiley.com/doi/abs/10.1029/96JA02037.spa
dcterms.bibliographicCitationCliver, E.W., Richardson, I.G., Ling, A.G., Solar drivers of 11-yr and long-term cosmic ray modulation. Space Sci. Rev. URL: https:// ntrs.nasa.gov/citations/20110023416, https://doi.org/10.1007/s11214- 011-9746-3. NTRS Author Affiliations: Air Force Research Lab., Maryland Univ., Atmospheric and Environmental Research, Inc. NTRS Report/Patent Number: GSFC.JA.5411.2011 NTRS Document ID: 20110023416 NTRS Research Center: Goddard Space Flight Center (GSFC).spa
dcterms.bibliographicCitationDavis, L., 1955. Interplanetary magnetic fields and cosmic rays. Phys. Rev. 100, 1440–1444. https://doi.org/10.1103/PhysRev.100.1440.spa
dcterms.bibliographicCitationDavis, T.N., Sugiura, M., 1966. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res. (1896–1977) 71, 785– 801. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/ JZ071i003p00785, https://doi.org/10.1029/JZ071i003p00785.spa
dcterms.bibliographicCitationDesai, M., Giacalone, J., 2016. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3. https://doi.org/10.1007/s41116- 016-0002-5.spa
dcterms.bibliographicCitationDorman, L.I., 1991. Cosmic ray modulation. Nucl. Phys. B Proc. Suppl. 22, 21–45. https://doi.org/10.1016/0920-5632(91)90005-Y, URL: https://www.sciencedirect.com/science/article/pii/092056329190005Yspa
dcterms.bibliographicCitationEngelbrecht, N.E., Effenberger, F., Florinski, V., Potgieter, M.S., Ruffolo, D., Chhiber, R., Usmanov, A.V., Rankin, J.S., Els, P.L., 2022. Theory of cosmic ray transport in the heliosphere. Space Sci. Rev. 218, 33. https://doi.org/10.1007/s11214-022-00896-1spa
dcterms.bibliographicCitationEroshenko, E., Belov, A., Mavromichalaki, H., Mariatos, G., Oleneva, V., Plainaki, C., Yanke, V., 2004. Cosmic-ray variations during the two greatest bursts of solar activity in the 23rd solar cycle. Sol. Phys. 224, 345–358. https://doi.org/10.1007/s11207-005-5719-6.spa
dcterms.bibliographicCitationFiandrini, E., Tomassetti, N., Bertucci, B., Donnini, F., Graziani, M., Khiali, B., Reina Conde, A., 2021. Numerical modeling of cosmic rays in the heliosphere: Analysis of proton data from AMS-02 and PAMELA. Phys. Rev. D 104, 023012. https://doi.org/10.1103/ PhysRevD.104.023012.spa
dcterms.bibliographicCitationGaisser, T.K., Stanev, T., 2006. High-energy cosmic rays. Nucl. Phys. A 777, 98–110. https://doi.org/10.1016/j.nuclphysa.2005.01.024, URL: https://www.sciencedirect.com/science/article/pii/S0375947405000540.spa
dcterms.bibliographicCitationGiacalone, J., Drake, J.F., Jokipii, J.R., 2012. The acceleration mechanism of anomalous cosmic rays. Space Sci. Rev. 173, 283–307. https:// doi.org/10.1007/s11214-012-9915-z.spa
dcterms.bibliographicCitationGopalswamy, N., Yashiro, S., Akiyama, S., 2016. Unusual polar conditions in solar cycle 24 and their implications for cycle 25. Astrophys. J. Lett. 823, L15. https://doi.org/10.3847/2041-8205/823/1/ L15.spa
dcterms.bibliographicCitationInceoglu, F., Knudsen, M.F., Karoff, C., Olsen, J., 2014. Modeling the relationship between neutron counting rates and sunspot numbers using the hysteresis effect. Sol. Phys. 289, 1387–1402. https://doi.org/ 10.1007/s11207-013-0391-8.spa
dcterms.bibliographicCitationIskra, K., Siluszyk, M., Alania, M., Wozniak, W., 2019. Experimental investigation of the delay time in galactic cosmic ray flux in different epochs of solar magnetic cycles: 1959–2014. Sol. Phys. 294, 115. https://doi.org/10.1007/s11207-019-1509-4.spa
dcterms.bibliographicCitationJanardhan, P., Fujiki, K., Ingale, M., Bisoi, S.K., Rout, D., 2018. Solar cycle 24: An unusual polar field reversal. Astron. Astrophys. 618, A148. https://doi.org/10.1051/0004-6361/201832981, URL: https:// www.aanda.org/articles/aa/abs/2018/10/aa32981-18/aa32981-18.html.spa
dcterms.bibliographicCitationJian, L.K., Russell, C.T., Luhmann, J.G., 2011. Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Sol. Phys. 274, 321–344. https://doi.org/10.1007/s11207-011-9737-2.spa
dcterms.bibliographicCitationJoo¨reskog, K.G., Soo¨rbom, D., 1984. LISREL VI, analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods, 4th ed ed. Scientific Software Inc, Mooresville, Ind, OCLC: 38667546.spa
dcterms.bibliographicCitationJo¨reskog, K.G., So¨rbom, D., 1982. Recent Developments in Structural Equation Modeling. J. Mark. Res. 19, 404–416. https://doi.org/ 10.1177/002224378201900402.spa
dcterms.bibliographicCitationKilpua, E.K.J., Luhmann, J.G., Jian, L.K., Russell, C.T., Li, Y., 2014. Why have geomagnetic storms been so weak during the recent solar minimum and the rising phase of cycle 24? J. Atmosph. Sol.-Terrestrial Phys. 107, 12–19. https://doi.org/10.1016/j.jastp.2013.11.001, URL: https://www.sciencedirect.com/science/article/pii/S1364682613002903.spa
dcterms.bibliographicCitationKlecker, B., Mewaldt, R.A., Cummings, A.C., 1998. Anomalous Cosmic Rays. In: Fisk, L.A., Jokipii, J.R., Simnett, G.M., von Steiger, R., Wenzel, K.P. (Eds.), Space Science Reviews, vol. 3. Springer, Dordrecht, Netherlands, pp. 259–308, URL: https://resolver.caltech. edu/CaltechAUTHORS:20150107-155451895.spa
dcterms.bibliographicCitationKoldobskiy, S.A., Ka¨hko¨nen, R., Hofer, B., Krivova, N.A., Kovaltsov, G.A., Usoskin, I.G., 2022. Time lag between cosmic-ray and solar variability: sunspot numbers and open solar magnetic flux. Sol. Phys. 297, 38. https://doi.org/10.1007/s11207-022-01970-1.spa
dcterms.bibliographicCitationKomitov, B., Duchlev, P., 2014. Synthetic solar x-ray flares time series since 1968 ad 40, D2.2-35-14. URL: https://ui.adsabs.harvard.edu/ abs/2014cosp...40E1562K. aDS Bibcode: 2014cosp...40E1562K.spa
dcterms.bibliographicCitationKomitov, B., Duchlev, P., Koleva, K., Dechev, M., 2010. Synthetic solar X-ray flares time series since AD 1968/s2. URL: http://arxiv.org/abs/ 1007.2735, https://doi.org/10.48550/arXiv.1007.2735. arXiv:1007.2735 [astro-ph].spa
dcterms.bibliographicCitationMavromichalaki, H., Paouris, E., Karalidi, T., 2007. Cosmic-ray modulation: an empirical relation with solar and heliospheric parameters. Sol. Phys. 245, 369–390. https://doi.org/10.1007/s11207-007-9043-1.spa
dcterms.bibliographicCitationMavromichalaki, H., Papaioannou, A., Plainaki, C., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Papailiou, M., Eroshenko, E., Belov, A., Yanke, V., Flu¨ckiger, E.O., Bu¨tikofer, R., Parisi, M., Storini, M., Klein, K.L., Fuller, N., Steigies, C.T., Rother, O.M., Heber, B., Wimmer-Schweingruber, R.F., Kudela, K., Strharsky, I., Langer, R., Usoskin, I., Ibragimov, A., Chilingaryan, A., Hovsepyan, G., Reymers, A., Yeghikyan, A., Kryakunova, O., Dryn, E., Nikolayevskiy, N., Dorman, L., Pustil’nik, L., 2011. Applications and usage of the real-time Neutron Monitor Database. Adv. Space Res. 47, 2210–2222. https://doi.org/10.1016/j.asr.2010.02.019, URL: https:// www.sciencedirect.com/science/article/pii/S0273117710001249.spa
dcterms.bibliographicCitationMavromichalaki, H., Papaioannou, A., Sarlanis, C., Souvatzoglou, G., Gerontidou, M., Plainaki, C., Papailiou, M., Mariatos, G., Nmdb Team, 2010. Establishing and Using the Real-Time Neutron Monitor Database (NMDB), p. 75. URL: https://ui.adsabs.harvard.edu/abs/ 2010ASPC.424...75M. aDS Bibcode: 2010ASPC.424...75Mspa
dcterms.bibliographicCitationMcCracken, K.G., McDonald, F.B., Beer, J., Raisbeck, G., Yiou, F., 2004. A phenomenological study of the long-term cosmic ray modulation, 850–1958 AD. J. Geophys. Res.: Space Phys. 109. https://doi. org/10.1029/2004JA010685, URL: https://onlinelibrary.wiley.- com/doi/abs/10.1029/2004JA010685spa
dcterms.bibliographicCitationMueller, 1999 R.O. Mueller Basic Principles of Structural Equation Modeling: An Introduction to LISREL and EQS Springer Science & Business Media (1999) Google-Books-ID: sXy2r5gQlB0Cspa
dcterms.bibliographicCitationMueller and Hancock, 2018 R.O. Mueller, G.R. Hancock Structural Equation Modeling The Reviewer’s Guide to Quantitative Methods in the Social Sciences (2 ed.), Routledge (2018)spa
dcterms.bibliographicCitationNagashima, K., Morishita, I., Twenty-two year modulation of cosmic rays associated with polarity reversal of polar magnetic field of the sun. Planet. Space Sci. 28, 195–205. https://doi.org/10.1016/0032-0633(80) 90095-1. URL: https://www.sciencedirect.com/science/article/pii/ 0032063380900951.spa
dcterms.bibliographicCitationNakagawa, Y., Nozawa, S., Shinbori, A., 2019. Relationship between the low-latitude coronal hole area, solar wind velocity, and geomagnetic activity during solar cycles 23 and 24. Earth, Planets Space 71, 24. https://doi.org/10.1186/s40623-019-1005-y.spa
dcterms.bibliographicCitationPaouris, E., Mavromichalaki, H., Belov, A., Gushchina, R., Yanke, V., 2012. Galactic cosmic ray modulation and the last solar minimum. Sol. Phys. 280, 255–271. https://doi.org/10.1007/s11207-012-0051-4spa
dcterms.bibliographicCitationPopielawska, B., 1992. Components of the 11- and 22-year variation of cosmic rays. Planet. Space Sci. 40, 811–827. https://doi.org/10.1016/ 0032-0633(92)90109-2, URL: https://www.sciencedirect.com/science/ article/pii/0032063392901092.spa
dcterms.bibliographicCitationPotgieter, M.S., 1995. The long-term modulation of galactic cosmic rays in the heliosphere. Adv. Space Res. 16, 191–203. https://doi.org/10.1016/ 0273-1177(95)00334-B, URL: https://www.sciencedirect.com/science/ article/pii/027311779500334B.spa
dcterms.bibliographicCitationPotgieter, M.S., Le Roux, J.A., 1992. The Simulated Features of Heliospheric Cosmic-Ray Modulation with a Time-dependent Drift Model. I. General Effects of the Changing Neutral Sheet over the Period 1985–1990. Astrophys. J. 386, 336. https://doi.org/10.1086/ 171020, aDS Bibcode: 1992ApJ...386.336P. URL: https://ui.adsabs. harvard.edu/abs/1992ApJ...386.336Pspa
dcterms.bibliographicCitationReames, D.V., 2013. The Two Sources of Solar Energetic Particles. Space Sci. Rev. 175, 53–92. https://doi.org/10.1007/s11214-013-9958-9.spa
dcterms.bibliographicCitationRichardson, I.G., Cane, H.V., 2012a. Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963– 2011). J. Space Weather Space Climate 2, A02. https://doi.org/ 10.1051/swsc/2012003, URL: https://www.swsc-journal.org/articles/ swsc/abs/2012/01/swsc120017/swsc120017.html.spa
dcterms.bibliographicCitationRichardson, I.G., Cane, H.V., 2012b. Solar wind drivers of geomagnetic storms during more than four solar cycles. J. Space Weather Space Climate 2, A01. https://doi.org/10.1051/swsc/2012001, URL: https:// www.swsc-journal.org/articles/swsc/abs/2012/01/swsc120012/ swsc120012.htmlspa
dcterms.bibliographicCitationRichardson, I.G., Cane, H.V., Cliver, E.W., 2002. Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res.: Space Phys. 107, SSH 8–1–SSH 8–13. https://doi.org/10.1029/ 2001JA000504. URL: https://onlinelibrary.wiley.com/doi/abs/10. 1029/2001JA000504.spa
dcterms.bibliographicCitationRichardson, I.G., Cliver, E.W., Cane, H.V., 2000. Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res.: Space Phys. 105, 18203–18213. https://doi.org/10.1029/1999JA000400. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/1999JA000400.spa
dcterms.bibliographicCitationRichardson, I.G., Cliver, E.W., Cane, H.V., 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972– 2000. Geophys. Res. Lett. 28, 2569–2572. https://doi.org/10.1029/spa
dcterms.bibliographicCitationRichardson, I.G., Cliver, E.W., Cane, H.V., 2001. Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000. Geophys. Res. Lett. 28, 2569–2572. https://doi.org/10.1029/2001GL013052. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2001GL013052spa
dcterms.bibliographicCitationRoss, E., Chaplin, W.J., 2019. The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol. Phys. 294, 8. https://doi. org/10.1007/s11207-019-1397-7.spa
dcterms.bibliographicCitationRussell, C.T., Luhmann, J.G., Jian, L.K., 2010. How unprecedented a solar minimum?. Rev. Geophys. 48. https://doi.org/10.1029/ 2009RG000316 URL: https://onlinelibrary.wiley.com/doi/abs/10. 1029/2009RG000316.spa
dcterms.bibliographicCitationShaul, D.N.A., Aplin, K.L., Arau´jo, H., Bingham, R., Blake, J.B., Branduardi-Raymont, G., Buchman, S., Fazakerley, A., Finn, L.S., Fletcher, L., Glover, A., Grimani, C., Hapgood, M., Kellet, B., Matthews, S., Mulligan, T., Ni, W., Nieminen, P., Posner, A., Quenby, J.J., Roming, P., Spence, H., Sumner, T., Vocca, H., Wass, P., Young, P., 2006. Solar And Cosmic Ray Physics And The Space Environment: Studies For And With LISA, pp. 172–178. https://doi.org/10.1063/1. 2405038. URL: https://aip.scitation.org/doi/abs/10.1063/1.2405038.spa
dcterms.bibliographicCitationSheskin, D.J., 2003. Handbook of Parametric and Nonparametric Statistical Procedures, third ed. Chapman and Hall/CRC, New York. https://doi.org/10.1201/9781420036268.spa
dcterms.bibliographicCitationShrivastava, P.K., 1997. Charecteristics of long-term cosmic ray modulation during different phases of sun spot cycles in relation with polarity of solar magnetic field., p. 65. URL: https://ui.adsabs. harvard.edu/abs/1997ICRC....2...65S. aDS Bibcode: 1997ICRC....2...65S.spa
dcterms.bibliographicCitationSierra-Porta, D., 2018. Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23. Astrophys. Space Sci. 363, 137. https://doi.org/10.1007/s10509-018- 3360-8.spa
dcterms.bibliographicCitationSingh, M., Badruddin, B., Asiri, H., 2021. Hysteresis, time lag, and relation between solar activity and cosmic rays during solar cycle 24. New Astron. 89, 101652. https://doi.org/10.1016/j.newast.2021.101652, URL: https://www.sciencedirect.com/science/article/ pii/S1384107621000841.spa
dcterms.bibliographicCitationSomaı¨la, K., Yacouba, S., Louis, Z.J., 2022. Solar wind and geomagnetic activity during two antagonist solar cycles: Comparative study between the solar cycles 23 and 24. Int. J. Phys. Sci. 17, 57–66. https://doi.org/10.5897/IJPS2022.4998, URL: https://academicjournals.org/journal/IJPS/article-abstract/4A39F8869748spa
dcterms.bibliographicCitationStauning, P., 2015. A critical note on the IAGA-endorsed Polar Cap index procedure: effects of solar wind sector structure and reverse polar convection, pp. 1443–1455. https://doi.org/10.5194/angeo-33-1443- 2015. URL: https://angeo.copernicus.org/articles/33/1443/2015/.spa
dcterms.bibliographicCitationTakalo, J., 2021. Comparison of Geomagnetic Indices During Even and Odd Solar Cycles SC17 – SC24: Signatures of Gnevyshev Gap in Geomagnetic Activity. Sol. Phys. 296, 19. https://doi.org/10.1007/ s11207-021-01765-wspa
dcterms.bibliographicCitationTroshichev, O.A., 2022. PC index as a ground-based indicator of the solar wind energy incoming into the magnetosphere: (1) relation of PC index to the solar wind electric field EKL. Front. Astron. Space Sci. 9, 1069470. https://doi.org/10.3389/fspas.2022.1069470, aDS Bibcode: 2022FrASS...969470T. URL: https://ui.adsabs.harvard.edu/abs/ 2022FrASS...969470Tspa
dcterms.bibliographicCitationTsurutani, B.T., Echer, E., Guarnieri, F.L., Gonzalez, W.D., 2011. The properties of two solar wind high speed streams and related geomagnetic activity during the declining phase of solar cycle 23. J. Atmos. Solar Terr. Phys. 73, 164–177. https://doi.org/10.1016/j.- jastp.2010.04.003, URL: https://www.sciencedirect.com/science/article/pii/S1364682610001197spa
dcterms.bibliographicCitationWibberenz, G., Richardson, I.G., Cane, H.V., 2002. A simple concept for modeling cosmic ray modulation in the inner heliosphere during solar cycles 20–23. J. Geophys. Res.: Space Phys. 107, SSH 5-1–SSH 5-15. https://doi.org/10.1029/2002JA009461, URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009461.spa
dcterms.bibliographicCitationZerbo, J.L., Richardson, J.D., 2015. The solar wind during current and past solar minima and maxima. J. Geophys. Res.: Space Phys. 120, 10250–10256. https://doi.org/10.1002/2015JA021407, URL: https:// onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021407.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.subject.keywordsCosmic raysspa
dc.subject.keywordsSun dynamicsspa
dc.subject.keywordsModellingspa
dc.subject.keywordsHeliospheric Abundancesspa
dc.subject.keywordsPhotospherespa
dc.subject.keywordsSolar windspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.