Mostrar el registro sencillo del ítem

dc.contributor.authorCastilla Caballero, Deyler
dc.contributor.authorSadak, Omer
dc.contributor.authorMartínez-Díaz, Jolaine
dc.contributor.authorMartínez-Castro, Valentina
dc.contributor.authorColina-Márquez, Jose
dc.contributor.authorMachuca-Martínez, Fiderman
dc.contributor.authorHernandez-Ramírez, Aracely
dc.contributor.authorVazquez-Rodriguez, Sofia
dc.date.accessioned2022-09-26T14:39:17Z
dc.date.available2022-09-26T14:39:17Z
dc.date.issued2022-06-17
dc.date.submitted2022-09-23
dc.identifier.citationCastilla-Caballero, Deyler Rafael & Sadak, Omer & Martínez-Díaz, Jolaine & Martínez-Castro, Valentina & Colina-Márquez, Jose & Machuca-Martínez, Fiderman & Hernandez-Ramírez, Aracely & Vazquez-Rodriguez, Sofia. (2022). Solid-state photocatalysis for plastics abatement: A review. Materials Science in Semiconductor Processing. 149. 106890. 10.1016/j.mssp.2022.106890.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11119
dc.description.abstractThe COVID-19 pandemic has caused a dramatic increase in plastic wastes associated with the use of single-use masks, gloves, gowns, and other personal protective equipment (PPE). The accumulation of PPE, especially single-use masks, end up polluting environment, causing harm mainly to aquatic and terrestrial ecosystems. Due to the enormous concern about plastic pollution, many efforts are being made to develop efficient technologies to tackle it, among which solid-state photocatalysis is highlighted. Even though the outstanding results that have been obtained with the solid-state application of photocatalysis, there are fewer publications and reports on the use of it in comparison with aqueous and/or gaseous phase photocatalysis. Then, this review presents the most relevant works published on this topic and provide an in-depth analysis of solid-state photocatalysis for plastic abatement, including the incorporation of the usually hydrophilic photocatalyst into the hydrophobic plastic matrix, the common experimental procedures for evaluating its effectiveness (gravimetric, optical, spectroscopic, and mechanical methods) and the description of the intricate reaction mechanism suggested so far. The aim is increasing the awareness on this innovative topic among the academic/industrial community and advancing the research thereon.spa
dc.format.extent21 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElsevier - Materials Science in Semiconductor Processing Vol. 149 (2022)spa
dc.titleSolid-state photocatalysis for plastics abatement: A reviewspa
dcterms.bibliographicCitationY. Liang, G. Huang, X. Xin, Y. Yao, Y. Li, J. Yin, X. Li, Y. Wu, S. Gao Black titanium dioxide nanomaterials for photocatalytic removal of pollutants: a review J. Mater. Sci. Technol., 112 (2022), pp. 239-262, 10.1016/J.JMST.2021.09.057spa
dcterms.bibliographicCitationA. Kumar, P. Raizada, A.A.P. Khan, V.H. Nguyen, Q. Van Le, A. Singh, V. Saini, R. Selvasembian, T.T. Huynh, P. Singh Phenolic compounds degradation: insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials Sci. Total Environ., 800 (2021), Article 149410, 10.1016/J.SCITOTENV.2021.149410spa
dcterms.bibliographicCitationN. Chandra Joshi, P. Gururani, S.P. Gairola Metal oxide nanoparticles and their nanocomposite-based materials as photocatalysts in the degradation of dyes Review, 12 (2022), pp. 6557-6579, 10.33263/BRIAC125.65576579spa
dcterms.bibliographicCitationM.C. Zapata-Zúñiga, M.Á. Parra-Pérez, J. Alexander Álvarez-Berrio, M.C. Zapata-Zuñiga, M.A. Parra-Pérez, J.A. Álvarez-Berrio, N.I. Molina-Gómez Technologies in wastewater treatment plants for the removal of antibiotics, resistant bacteria and antibiotic resistance genes: a review of the current literature Ing. Univ., 26 (2022), p. 2022, 10.11144/JAVERIANA.IYU26.TWTPspa
dcterms.bibliographicCitationL. Saya, V. Malik, D. Gautam, G. Gambhir, Balendra, W.R. Singh, S. Hooda A comprehensive review on recent advances toward sequestration of levofloxacin antibiotic from wastewater Sci. Total Environ., 813 (2022), Article 152529, 10.1016/J.SCITOTENV.2021.152529spa
dcterms.bibliographicCitationM.A. Mueses, J. Colina-Márquez, F. Machuca-Martínez, G. Li Puma Recent advances on modeling of solar heterogeneous photocatalytic reactors applied for degradation of pharmaceuticals and emerging organic contaminants in water Curr. Opin. Green Sustain. Chem., 30 (2021), Article 100486, 10.1016/J.COGSC.2021.100486spa
dcterms.bibliographicCitationT.A. Saleh, M. Mustaqeem, M. Khaled Water treatment technologies in removing heavy metal ions from wastewater: a review Environ. Nanotechnol. Monit. Manag., 17 (2022), Article 100617, 10.1016/J.ENMM.2021.100617spa
dcterms.bibliographicCitationA. Ahmad, S.B. Kurniawan, S.R.S. Abdullah, A.R. Othman, H.A. Hasan Contaminants of emerging concern (CECs) in aquaculture effluent: insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches Chemosphere, 290 (2022), Article 133319, 10.1016/J.CHEMOSPHERE.2021.133319spa
dcterms.bibliographicCitationA. Talaiekhozani, S. Rezania, K.H. Kim, R. Sanaye, A.M. Amani Recent advances in photocatalytic removal of organic and inorganic pollutants in air J. Clean. Prod., 278 (2021), Article 123895, 10.1016/J.JCLEPRO.2020.123895spa
dcterms.bibliographicCitationI.A. Ricardo, E.A. Alberto, A.H. Silva Júnior, D.L.P. Macuvele, N. Padoin, C. Soares, H. Gracher Riella, M.C.V.M. Starling, A.G. Trovó A critical review on microplastics, interaction with organic and inorganic pollutants, impacts and effectiveness of advanced oxidation processes applied for their removal from aqueous matrices Chem. Eng. J., 424 (2021), Article 130282, 10.1016/J.CEJ.2021.130282spa
dcterms.bibliographicCitationH. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies Chin. J. Catal., 43 (2022), pp. 178-214, 10.1016/S1872-2067(21)63910-4spa
dcterms.bibliographicCitationR. Arriagada, F. Lagos, M. Jaime, C. Salazar Exploring consistency between stated and revealed preferences for the plastic bag ban policy in Chile Waste Manag., 139 (2022), pp. 381-392, 10.1016/J.WASMAN.2021.12.040spa
dcterms.bibliographicCitationT.R. Walker, E. McGuinty, S. Charlebois, J. Music Single-use plastic packaging in the Canadian food industry: consumer behavior and perceptions Humanit. Soc. Sci. Commun., 81 (8) (2021), pp. 1-11, 10.1057/s41599-021-00747-4spa
dcterms.bibliographicCitationP. Behuria, Ban the (plastic) bag? Explaining variation in the implementation of plastic bag bans in Rwanda, Kenya and Uganda:, Https://Doi.Org/10.1177/2399654421994836. 39 (2021) 1791–1808. https://doi.org/10.1177/2399654421994836.spa
dcterms.bibliographicCitationH. Du, S. Huang, J. Wang Environmental risks of polymer materials from disposable face masks linked to the COVID-19 pandemic Sci. Total Environ., 815 (2022), Article 152980, 10.1016/J.SCITOTENV.2022.152980spa
dcterms.bibliographicCitationI.A. Hassan, A. Younis, M.A. Al Ghamdi, M. Almazroui, J.M. Basahi, M.M. El-Sheekh, E.K. Abouelkhair, N.S. Haiba, M.S. Alhussaini, D. Hajjar, M.M. Abdel Wahab, D.M. El Maghraby Contamination of the marine environment in Egypt and Saudi Arabia with personal protective equipment during COVID-19 pandemic: a short focus Sci. Total Environ., 810 (2022), Article 152046, 10.1016/J.SCITOTENV.2021.152046spa
dcterms.bibliographicCitationK.P. Roberts, S.C. Phang, J.B. Williams, D.J. Hutchinson, S.E. Kolstoe, J. Bie, I.D. Williams, A.M. Stringfellow, Increased personal protective equipment litter as a result of COVID-19 measures, (n.d.). https://doi.org/10.1038/s41893-021-00824-1.spa
dcterms.bibliographicCitationR. Porta The plastics sunset and the bio-plastics sunrise 2019 Coatings, 9 (2019), p. 526, 10.3390/COATINGS9080526 526. 9spa
dcterms.bibliographicCitationR.A. Muñoz Meneses, G. Cabrera-Papamija, F. Machuca-Martínez, L.A. Rodríguez, J.E. Diosa, E. Mosquera-Vargas Plastic recycling and their use as raw material for the synthesis of carbonaceous materials Heliyon, 8 (2022), Article e09028, 10.1016/J.HELIYON.2022.E09028spa
dcterms.bibliographicCitationS. De Gisi, G. Gadaleta, G. Gorrasi, F.P. La Mantia, M. Notarnicola, A. Sorrentino The role of (bio)degradability on the management of petrochemical and bio-based plastic waste J. Environ. Manag., 310 (2022), Article 114769, 10.1016/J.JENVMAN.2022.114769spa
dcterms.bibliographicCitationS. Kane, E. Van Roijen, C. Ryan, S. Miller Reducing the environmental impacts of plastics while increasing strength: biochar fillers in biodegradable, recycled, and fossil-fuel derived plastics Compos. Part C Open Access, 8 (2022), Article 100253, 10.1016/J.JCOMC.2022.10025spa
dcterms.bibliographicCitationZ. Lin, T. Jin, T. Zou, L. Xu, B. Xi, D. Xu, J. He, L. Xiong, C. Tang, J. Peng, Y. Zhou, J. Fei Current progress on plastic/microplastic degradation: fact influences and mechanism Environ. Pollut., 304 (2022), p. 119159, 10.1016/J.ENVPOL.2022.119159spa
dcterms.bibliographicCitationX. Jiao, K. Zheng, Q. Chen, X. Li, Y. Li, W. Shao, J. Xu, J. Zhu, Y. Pan, Y. Sun, Y. Xie Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions Angew. Chem. Int. Ed., 59 (2020), pp. 15497-15501, 10.1002/ANIE.201915766spa
dcterms.bibliographicCitationT. Uekert, H. Kasap, E. Reisner Photoreforming of nonrecyclable plastic waste over a carbon nitride/nickel phosphide catalyst J. Am. Chem. Soc., 141 (2019), pp. 15201-15210, 10.1021/JACS.9B06872/SUPPL_FILE/JA9B06872_SI_001.PDFspa
dcterms.bibliographicCitationT. Uekert, C.M. Pichler, T. Schubert, E. Reisner Solar-driven reforming of solid waste for a sustainable future Nat. Sustain., 45 (4) (2020), pp. 383-391, 10.1038/s41893-020-00650-x 2020spa
dcterms.bibliographicCitationO.O. Fadare, E.D. Okoffo Covid-19 face masks: a potential source of microplastic fibers in the environment Sci. Total Environ., 737 (2020), Article 140279, 10.1016/j.scitotenv.2020.140279spa
dcterms.bibliographicCitationO. Alam, M. Billah, D. Yajie Characteristics of plastic bags and their potential environmental hazards https://doi.org/10.1016/j.resconrec.2018.01.037 (2018)spa
dcterms.bibliographicCitationK. Tennakone, C.T.K. Tilakaratne, I.R.M. Kottegoda Photocatalytic degradation of organic contaminants in water with TiO2 supported on polythene films J. Photochem. Photobiol. Chem., 87 (1995), pp. 177-179, 10.1016/1010-6030(94)03980-9spa
dcterms.bibliographicCitationN.S. Allen, J.F. McKellar, G.O. Phillips, D.G.M. Wood Effect of titanium dioxide pigments on the phosphorescence from polyolefins J. Polym. Sci. Polym. Lett. Ed., 12 (1974), pp. 241-245, 10.1002/pol.1974.130120501spa
dcterms.bibliographicCitationB. Ohtani, S. Adzuma, H. Miyadzu, S. Nishimoto, T. Kagiya Photocatalytic degradation of polypropylene film by dispersed titanium dioxide particles Polym. Degrad. Stabil., 23 (1989), pp. 271-278, 10.1016/0141-3910(89)90101-8spa
dcterms.bibliographicCitationB. Ohtani, S. Adzuma, S. Nishimoto, T. Kagiya Photocatalytic degradation of polyethylene film by incorporated extra-fine particles of titanium dioxide Polym. Degrad. Stabil., 35 (1992), pp. 53-60, 10.1016/0141-3910(92)90135-Rspa
dcterms.bibliographicCitationS. Cho, W. Choi Solid-phase photocatalytic degradation of PVC-TiO2 polymer composites J. Photochem. Photobiol. Chem., 143 (2001), pp. 221-228, 10.1016/S1010-6030(01)00499-3spa
dcterms.bibliographicCitationD. Feldman Polymer weathering: photo-oxidation J. Polym. Environ., 10 (2002)spa
dcterms.bibliographicCitationU. Gesenhues Influence of titanium dioxide pigments on the photodegradation of poly(vinyl chloride) Polym. Degrad. Stabil., 68 (2000), pp. 185-196, 10.1016/S0141-3910(99)00184-6spa
dcterms.bibliographicCitationX.u. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation J. Mol. Catal. Chem., 268 (2007), pp. 101-106, 10.1016/J.MOLCATA.2006.12.012spa
dcterms.bibliographicCitationX. Zhao, Z. Li, Y. Chen, L. Shi, Y. Zhu Enhancement of photocatalytic degradation of polyethylene plastic with CuPc modified TiO2 photocatalyst under solar light irradiation Appl. Surf. Sci., 254 (2008), pp. 1825-1829, 10.1016/J.APSUSC.2007.07.154spa
dcterms.bibliographicCitationK. Miyazaki, H. Nakatani Preparation of degradable polypropylene by an addition of poly(ethylene oxide) microcapsule containing TiO2 Polym. Degrad. Stabil., 94 (2009), pp. 2114-2120, 10.1016/j.polymdegradstab.2009.10.001spa
dcterms.bibliographicCitationW. Liang, Y. Luo, S. Song, X. Dong, X. Yu High photocatalytic degradation activity of polyethylene containing polyacrylamide grafted TiO2 Polym. Degrad. Stabil., 98 (2013), pp. 1754-1761, 10.1016/j.polymdegradstab.2013.05.027spa
dcterms.bibliographicCitationR.T. Thomas, N. Sandhyarani Enhancement in the photocatalytic degradation of low density polyethylene–TiO2 nanocomposite films under solar irradiation RSC Adv., 3 (2013), Article 14080, 10.1039/c3ra42226gspa
dcterms.bibliographicCitationY. An, J. Hou, Z. Liu, B. Peng Enhanced solid-phase photocatalytic degradation of polyethylene by TiO2-MWCNTs nanocomposites Mater. Chem. Phys., 148 (2014), pp. 387-394, 10.1016/j.matchemphys.2014.08.001spa
dcterms.bibliographicCitationX.L. García-Montelongo, A. Martínez-De La Cruz, S. Vázquez-Rodríguez, L.M. Torres-Martínez Photo-oxidative degradation of TiO2/polypropylene films Mater. Res. Bull., 51 (2014), pp. 56-62, 10.1016/j.materresbull.2013.11.040spa
dcterms.bibliographicCitationM.M. Kamrannejad, A. Hasanzadeh, N. Nosoudi, L. Mai, A.A. Babaluo, H. Ave Photocatalytic degradation of polypropylene/TiO2 nano-composites Mater. Res., 17 (2014), pp. 1039-1046, 10.1590/1516-1439.267214spa
dcterms.bibliographicCitationS.S. Ali, I.A. Qazi, M. Arshad, Z. Khan, T.C. Voice, C.T. Mehmood Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes Environ. Nanotechnol. Monit. Manag., 5 (2016), pp. 44-53, 10.1016/j.enmm.2016.01.001spa
dcterms.bibliographicCitationP.A. Zapata, A. Zenteno, N. Amigó, F.M. Rabagliati, F. Sepúlveda, F. Catalina, T. Corrales Study on the photodegradation of nanocomposites based on polypropylene and TiO2 nanotubes Polym. Degrad. Stabil., 133 (2016), pp. 101-107, 10.1016/j.polymdegradstab.2016.08.008spa
dcterms.bibliographicCitationK.A. Bustos-Torres, S. Vazquez-Rodriguez, A.M. de la Cruz, S. Sepulveda-Guzman, R. Benavides, R. Lopez-Gonzalez, L.M. Torres-Martínez Influence of the morphology of ZnO nanomaterials on photooxidation of polypropylene/ZnO composites Mater. Sci. Semicond. Process., 68 (2017), pp. 217-225, 10.1016/j.mssp.2017.06.023spa
dcterms.bibliographicCitationR. Verma, S. Singh, M.K. Dalai, M. Saravanan, V.V. Agrawal, A.K. Srivastava Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation Mater. Des., 133 (2017), pp. 10-18, 10.1016/j.matdes.2017.07.042spa
dcterms.bibliographicCitationA. Prasert, S. Sontikaew, D. Sriprapai, S. Chuangchote Polypropylene/ZnO nanocomposites: mechanical properties, photocatalytic dye degradation, and antibacterial property Materials, 13 (2020), pp. 1-16spa
dcterms.bibliographicCitationY. Zhao, F. Zhang, J. Zhang, K. Zou, J. Zhang, C. Chen, M. Long, Q. Zhang, J. Wang, C. Zheng, W. Shou, D. Wang Preparation of composite photocatalyst with tunable and self-indicating delayed onset of performance and its application in polyethylene degradation Appl. Catal. B Environ., 286 (2021), 10.1016/j.apcatb.2021.119918 119918spa
dcterms.bibliographicCitationD. Wang, P. Zhang, M. Yan, L. Jin, X. Du, F. Zhang, Q. Wang, B. Ni, C. Chen Degradation mechanism and properties of debris of photocatalytically degradable plastics LDPE-TiO2 vary with environments Polym. Degrad. Stabil., 195 (2022), Article 109806, 10.1016/j.polymdegradstab.2021.109806spa
dcterms.bibliographicCitationM. Alizadeh Sani, M. Maleki, H. Eghbaljoo-Gharehgheshlaghi, A. Khezerlou, E. Mohammadian, Q. Liu, S.M. Jafari Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films Adv. Colloid Interface Sci., 300 (2022), Article 102593, 10.1016/J.CIS.2021.102593spa
dcterms.bibliographicCitationS. Lotfi, K. Fischer, A. Schulze, A.I. Schäfer Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process Nat. Nanotechnol. (2022), 10.1038/s41565-022-01074-8spa
dcterms.bibliographicCitationR.T. Thomas, V. Nair, N. Sandhyarani TiO2 nanoparticle assisted solid phase photocatalytic degradation of polythene film: a mechanistic investigation Colloids Surfaces A Physicochem. Eng. Asp., 422 (2013), pp. 1-9, 10.1016/j.colsurfa.2013.01.017spa
dcterms.bibliographicCitationJ. Alvarado, G. Acosta, F. Perez Study of the effect of the dispersion of functionalized nanoparticles TiO2 with photocatalytic activity in LDPE Polym. Degrad. Stabil., 134 (2016), pp. 376-382, 10.1016/j.polymdegradstab.2016.11.009spa
dcterms.bibliographicCitationK. Rajakumar, V. Sarasvathy, A. Thamarai Chelvan, R. Chitra, C.T. Vijayakumar Natural weathering studies of polypropylene J. Polym. Environ., 17 (2009), pp. 191-202, 10.1007/s10924-009-0138-7spa
dcterms.bibliographicCitationH. Zhao, R.K.Y. Li A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites Polymer (Guildf), 47 (2006), pp. 3207-3217, 10.1016/J.POLYMER.2006.02.089spa
dcterms.bibliographicCitationN. Lucas, C. Bienaime, C. Belloy, M. Queneudec, F. Silvestre, J.E. Nava-Saucedo Polymer biodegradation: mechanisms and estimation techniques - a review Chemosphere, 73 (2008), pp. 429-442, 10.1016/j.chemosphere.2008.06.064spa
dcterms.bibliographicCitationP. Nguyen-Tri, P. Ghassemi, P. Carriere, S. Nanda, A.A. Assadi, D.D. Nguyen Recent applications of advanced atomic force microscopy in polymer science: a review Polymers, 12 (2020), pp. 1-28, 10.3390/POLYM12051142spa
dcterms.bibliographicCitationR. Shanti, A.N. Hadi, Y.S. Salim, S.Y. Chee, S. Ramesh, K. Ramesh Degradation of ultra-high molecular weight poly(methyl methacrylate-co-butyl acrylate-co-acrylic acid) under ultra violet irradiation RSC Adv., 7 (2017), pp. 112-120, 10.1039/c6ra25313jspa
dcterms.bibliographicCitationP. Nguyen-Tri, R.E. Prud’homme Nanoscale analysis of the photodegradation of polyester fibers by AFM-IR J. Photochem. Photobiol. Chem., 371 (2019), pp. 196-204, 10.1016/j.jphotochem.2018.11.017spa
dcterms.bibliographicCitationM. Niaounakis Biopolymers: Applications and Trends (2015), 10.1016/c2014-0-00936-7spa
dcterms.bibliographicCitationR.A. Rahman (Ed.), Kinetic Modeling for Environmental Systems (2019), 10.5772/intechopen.79240spa
dcterms.bibliographicCitationS. Carroccio, P. Rizzarelli, C. Puglisi, G. Montaudo MALDI investigation of photooxidation in aliphatic polyesters: poly(butylene succinate) Macromolecules, 37 (2004), pp. 6576-6586, 10.1021/ma049633espa
dcterms.bibliographicCitationP. Tasakorn, W. Amatyakul Photochemical reduction of molecular weight and number of double bonds in natural rubber film Kor. J. Chem. Eng., 25 (2008), pp. 1532-1538, 10.1007/s11814-008-0252-6spa
dcterms.bibliographicCitationT.S. Tofa, K.L. Kunjali, S. Paul, J. Dutta Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods Environ. Chem. Lett., 17 (2019), pp. 1341-1346, 10.1007/s10311-019-00859-zspa
dcterms.bibliographicCitationZ. Ouyang, Y. Yang, C. Zhang, S. Zhu, L. Qin, W. Wang, D. He, Y. Zhou, H. Luo, F. Qin Recent advances in photocatalytic degradation of plastics and plastic-derived chemicals J. Mater. Chem. A., 9 (2021), pp. 13402-13441, 10.1039/d0ta12465fspa
dcterms.bibliographicCitationO. Agboola, R. Sadiku, T. Mokrani, I. Amer, O. Imoru Polyolefins and the environment Polyolefin Fibres (2017), pp. 89-133, 10.1016/B978-0-08-101132-4.00004-7spa
dcterms.bibliographicCitationY. Zhong, H. Chen, X. Chen, B. Zhang, W. Chen, W. Lu Abiotic degradation behavior of polyacrylonitrile-based material filled with a composite of TiO2 and g-C3N4 under solar illumination Chemosphere, 299 (2022), Article 134375, 10.1016/J.CHEMOSPHERE.2022.134375spa
dcterms.bibliographicCitationW. Zhang, J.W. Rhim Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films Food Packag. Shelf Life, 31 (2022), Article 100806, 10.1016/J.FPSL.2021.100806spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.mssp.2022.106890
dc.subject.keywordsSolid-state photocatalysisspa
dc.subject.keywordsPlastic pollutionspa
dc.subject.keywordsPolyolefinsspa
dc.subject.keywordsTiO2spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.