Show simple item record

dc.contributor.authorRomero, Lenny A.
dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.contributor.authorMillán, María S.
dc.date.accessioned2022-05-19T21:17:56Z
dc.date.available2022-05-19T21:17:56Z
dc.date.issued2022-02-19
dc.date.submitted2022-05-19
dc.identifier.citationRomero, L.A.; Marrugo, A.G.; Millán, M.S. Trade-Off Asymmetric Profile for Extended-Depth-of-Focus Ocular Lens. Photonics 2022, 9, 119. https://doi.org/10.3390/photonics9020119spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10697
dc.description.abstractWe explore the possibility of extending the depth of focus of an imaging lens with an asymmetric quartic phase-mask, while keeping the aberration within a relatively low level. This can be intended, for instance, for ophthalmic applications, where no further digital processing can take place, relying instead on the patient’s neural adaptation to their own aberrations. We propose a computational optimization method to derive the design-strength factor of the asymmetric profile. The numerical and experimental results are shown. The optical experiment was conducted by means of a modulo-2π phase-only spatial light modulator. The proposed combination of the asymmetric mask and the lens can be implemented in a single refractive element. An exemplary case of an extended-depth-of focus intraocular lens based on the proposed element is described and demonstrated with a numerical experiment.spa
dc.format.extent15 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourcePhotonics - Vol. 9 N° 2 (2022)spa
dc.titleTrade-Off Asymmetric Profile for Extended-Depth-of-Focus Ocular Lensspa
dcterms.bibliographicCitationWang, B.; Ciureda, K.J. Depth-of-Focus of the Human Eye: Theory and Clinical Implications. Surv. Ophthalmol. 2006, 51, 75–85spa
dcterms.bibliographicCitationZalevsky, Z. Extended depth of focus imaging: A review. SPIE Rev. 2010, 1, 018001spa
dcterms.bibliographicCitationRomero, L.A.; Millan, M.S. Programmable Diffractive Optical Elements with Applicability in Ophthalmic Optics. Opt. Pura Apl. 2017, 50, 75–91.spa
dcterms.bibliographicCitationCastro, A.; Ojeda-Castañeda, J. Asymmetric phase masks for extended depth of field. Appl. Opt. 2004, 43, 3474–3479.spa
dcterms.bibliographicCitationCastro, A.; Frauel, Y.; Javidi, B. Integral imaging with large depth of field using an asymmetric phase mask. Opt. Express 2007, 15, 10266–10273spa
dcterms.bibliographicCitationArtal, P.; Chen, L.; Fernández, E.J.; Singer, B.; Manzanera, S.; Williams, D.R. Neural compensation for the eye’s optical aberrations. J. Vis. 2004, 4, 281–287spa
dcterms.bibliographicCitationSawides, L.; de Gracia, P.; Dorronsoro, C.; Webster, M.A.; Marcos, S. Vision is adapted to the natural level of blur present in the retinal image. PLoS ONE 2011, 6, e27031spa
dcterms.bibliographicCitationRadhakrishnan, A.; Dorronsoro, C.; Sawides, L.; Webster, M.A.; Marcos, S. A cyclopean neural mechanism compensating for optical differences between the eyes. Curr. Biol. 2015, 25, 188–189.spa
dcterms.bibliographicCitationPetelczyc, K.; Bara, S.; Ciro López, A.; Jaroszewicz, Z.; Kakarenko, K.; Kołodziejczyk, A.; Sypek, M. Contrast transfer characteristics of the light sword optical element designed for presbyopia compensations. J. Eur. Opt. Soc. Rapid Publ. 2011, 6, 11053.spa
dcterms.bibliographicCitationRomero, L.A.; Millan, M.S.; Jaroszewicz, Z.; Kolodziejczyk, A. Double peacock eye optical element for extended focal depth imaging with ophthalmic applications. J. Biomed. Opt. 2012, 17, 046013spa
dcterms.bibliographicCitationCharman, W.N.; Liu, Y.; Atchison, D.A. Small-aperture optics for the presbyope: Do comparable designs of corneal inlays and intraocular lenses provide similar transmittances to the retina? J. Opt. Soc. Am. A 2019, 36, B7–B14.spa
dcterms.bibliographicCitationBenard, Y.; Lopez-Gil, N.; Legras, R. Subjective depth of field in presence of 4th-order and 6th-order Zernike spherical aberration using adaptive optics technology. J. Cataract Refract. Surg. 2010, 36, 2129–2138.spa
dcterms.bibliographicCitationBarbero, S. Smooth multifocal wavefronts with a prescribed mean curvature for visual optics applications. Appl. Opt. 2021, 60, 6147–6154spa
dcterms.bibliographicCitationGoodman, J.W. Introduction to Fourier Optics, 2nd ed.; McGraw-Hill: New York, NY, USA, 1996; Chapter 5.spa
dcterms.bibliographicCitationHopkins, H.H. The frequency response of a defocused optical system. Proc. R. Soc. London Ser. A Math. Phys. Sci. 1955, 231, 91–103.spa
dcterms.bibliographicCitationBoreman, G.D. Modulation Transfer Function in Optical and Electro-Optical Systems, Volume TT 52; SPIE Press: Bellingham, DC, USA, 2001.spa
dcterms.bibliographicCitationMarsack, J.D.; Thibos, L.N.; Applegate, R.A. Metrics of optical quality derived from wave aberrations predict visual performance. J. Vis. 2004, 4, 8.spa
dcterms.bibliographicCitationThibos, L.N.; Hong, X.; Bradley, A.; Applegate, R.A. Accuracy and precision of objective refraction from wavefront aberrations. J. Vis. 2004, 4, 329–351spa
dcterms.bibliographicCitationDemenikov, M. Optimization of hybrid imaging systems based on maximization of kurtosis of the restored point spread function. Opt. Lett. 2011, 36, 4740–4742spa
dcterms.bibliographicCitationCarles, G.; Carnicer, A.; Bosch, S. Phase mask selection in wavefront coding systems: A design approach. Opt. Laser Eng. 2010, 48, 779–785spa
dcterms.bibliographicCitationVoelz, D.G. Computational Fourier Optics: A MATLAB Tutorial; SPIE Press: Bellingham, DC, USA, 2011; Chapter 7.spa
dcterms.bibliographicCitationOtón, J.; Ambs, P.; Millán, M.S.; Pérez-Cabré, E. Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays. Appl. Opt. 2007, 46, 5667–5679.spa
dcterms.bibliographicCitationSamei, E.; Flynn, M.; Reimann, D. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys. 1998, 25, 102–113spa
dcterms.bibliographicCitationMikuła, G.; Kolodziejczyk, A.; Makowski, M.; Prokopowicz, C.; Sypek, M. Diffractive elements for imaging with extended depth of focus. Opt. Eng. 2005, 44, 058001spa
dcterms.bibliographicCitationRomero, L. Programmable Diffractive Optical Elements with Applicability in Ophthalmic Optics. Ph.D. Dissertation, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain, 2013.spa
dcterms.bibliographicCitationISO 11979-2; Ophthalmic Implants, Intraocular Lenses—Part 2: Optical Properties and Test Methods. International Organization for Standardization: Geneva, Switzerland, 2014.spa
dcterms.bibliographicCitationMillán, M.S.; Vega, F. Extended depth of focus intraocular lens: Chromatic performance. Biomed. Opt. Express 2017, 8, 4294–4309.spa
dcterms.bibliographicCitationANSI Z80.35-2018; American National Standard Institute, Ophthalmics. Extended Depth of Focus Intraocular Lenses. The Vision Council: Alexandria, VA, USA, 2018.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/photonics9020119
dc.subject.keywordsExtended depth of focusspa
dc.subject.keywordsDepth of fieldspa
dc.subject.keywordsPhase maskspa
dc.subject.keywordsOphthalmic lensspa
dc.subject.keywordsIntraocular lensspa
dc.subject.keywordsRange of visionspa
dc.subject.keywordsPresbyopia compensationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.