Mostrar el registro sencillo del ítem

dc.contributor.authorIzquierdo, Rodolfo
dc.contributor.authorCubillán, Néstor
dc.contributor.authorGuerra, Mayamarú
dc.contributor.authorRosales, Merlin
dc.date.accessioned2021-07-29T19:57:24Z
dc.date.available2021-07-29T19:57:24Z
dc.date.issued2021-02-24
dc.date.submitted2021-07-20
dc.identifier.citationRodolfo Izquierdo, Néstor Cubillan, Mayamaru Guerra, Merlín Rosales. Substituted heterocycles as new candidates for liquid organic hydrogen carriers: In silico design from DFT calculations, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2021.02.201spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10342
dc.description.abstractA new set of compounds based on N- and S-heterocycles were investigated through Density Functional Theory (DFT) for their use as liquid organic hydrogen carriers (LOHCs). The hydrogenated forms of these compounds could release hydrogen within the most important technical requirements in mobile and stationary applications. In this work, the potential of the 1H-pyrrole/tetrahydro-1H-pyrrole and thiophene/tetrahydrothiophene pairs as possible leader structures to synthesize more sustainable LOHCs from costless oil-refining and oil-hydrotreating by-products is shown. According to DFT-M06-HF results, the 3-allyl-1H-pyrrole/3-allyl-tetrahydro-1H-pyrrole pair presented an adequate theoretical hydrogen storage capacity (3.6 %wt H) and a high theoretical dehydrogenation equilibrium yields (% εd = 67.8%) at 453 K. Therefore, this pair is recommended for hydrogen storage stationary applications. On the other hand, the 2-(thiophen-2-yl)-1H-pyrrole/2-(2,3-dihydrothiophen-2-yl)tetrahydropyrrole pair proved to be suitable for both mobile and stationary applications; the storage capacity of this pair was 3.9 %wt H and the theoretical dehydrogenation equilibrium yields at 453 K (% εd = 28.1%) was considered moderate.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Hydrogen Energyspa
dc.titleSubstituted heterocycles as new candidates for liquid organic hydrogen carriers: In silico design from DFT calculationsspa
dcterms.bibliographicCitationAndersson J, Gronkvist S. Large-scale storage of hydrogen. € Int J Hydrogen Energy 2019;44:11901e19. https://doi.org/ 10.1016/j.ijhydene.2019.03.063.spa
dcterms.bibliographicCitationMakepeace JW, He T, Weidenthaler C, Jensen TR, Chang F, Vegge T, et al. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: recent progress. Int J Hydrogen Energy 2019;44:7746e67. https:// doi.org/10.1016/j.ijhydene.2019.01.144.spa
dcterms.bibliographicCitationLankof L, Tarkowski R. Assessment of the potential for underground hydrogen storage in bedded salt formation. Int J Hydrogen Energy 2020;45:19479. https://doi.org/10.1016/ j.ijhydene.2020.05.024. e92.spa
dcterms.bibliographicCitationGonzalez I, De Santiago F, Arellano LG, Miranda A, Trejo A, Salazar F, et al. Theoretical modelling of porous silicon decorated with metal atoms for hydrogen storage. Int J Hydrogen Energy 2020;45:26321e33. https://doi.org/10.1016/ j.ijhydene.2020.05.097.spa
dcterms.bibliographicCitationIshaq H, Siddiqui O, Chehade G, Dincer I. A solar and wind driven energy system for hydrogen and urea production with CO2 capturing. Int J Hydrogen Energy 2021;46:4749e60. https://doi.org/10.1016/j.ijhydene.2020.01.208.spa
dcterms.bibliographicCitationZhang Y, Fu J, Xie M, Liu J. Improvement of H2/O2 chemical kinetic mechanism for high pressure combustion. Int J Hydrogen Energy 2020;46:5799e811. https://doi.org/10.1016/ j.ijhydene.2020.11.083.spa
dcterms.bibliographicCitationAbe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage: review and recommendation. Int J Hydrogen Energy 2019;44:15072e86. https://doi.org/ 10.1016/j.ijhydene.2019.04.068.spa
dcterms.bibliographicCitationHarrison D, Welchman E, Chabal YJ, Thonhauser T. Materials for hydrogen storage. Handb. Clean energy syst.. Chichester, UK: John Wiley & Sons, Ltd; 2015. p. 1e19. https://doi.org/ 10.1002/9781118991978.hces222.spa
dcterms.bibliographicCitationZu¨ttel A, Hirscher M, Panella B, Yvon K, Orimo S, Bogdanovic B, et al. Hydrogen storage. Hydrog. As a futur. Energy carr.. Wiley; 2008. p. 165e263. https://doi.org/10.1002/ 9783527622894.ch6.spa
dcterms.bibliographicCitationHirscher M, Yartys VA, Baricco M, Bellosta von Colbe J, Blanchard D, Bowman RC, et al. Materials for hydrogenbased energy storage e past, recent progress and future outlook. J Alloys Compd 2020;827:153548. https://doi.org/ 10.1016/j.jallcom.2019.153548spa
dcterms.bibliographicCitationZu¨ttel A. Hydrogen storage methods. Naturwissenschaften 2004;91:157e72. https://doi.org/10.1007/s00114-004-0516-x.spa
dcterms.bibliographicCitationMananghaya MR, Santos GN, Yu D. Hydrogen adsorption of Ti-decorated boron nitride nanotube: a density functional based tight binding molecular dynamics study. Adsorption 2018;24:683e90. https://doi.org/10.1007/s10450-018-9971-0spa
dcterms.bibliographicCitationMananghaya MR. A simulation of hydrogen adsorption/ desorption in metal-functionalized BN nanotube. Mater Chem Phys 2019;240:122159. https://doi.org/10.1016/ j.matchemphys.2019.122159.spa
dcterms.bibliographicCitationDawood F, Anda M, Shafiullah GM. Hydrogen production for energy: an overview. Int J Hydrogen Energy 2020;45:3847e69. https://doi.org/10.1016/j.ijhydene.2019.12.059.spa
dcterms.bibliographicCitationEberle U, Felderhoff M, Schu¨th F. Chemical and physical solutions for hydrogen storage. Angew Chem Int Ed 2009;48:6608e30. https://doi.org/10.1002/anie.200806293spa
dcterms.bibliographicCitationMarkiewicz M, Zhang YQ, Bosmann A, Bru € ¨ ckner N, Thoming J, Wasserscheid P, et al. Environmental and health € impact assessment of Liquid Organic Hydrogen Carrier (LOHC) systems-challenges and preliminary results. Energy Environ Sci 2015;8:1035e45. https://doi.org/10.1039/ c4ee03528c.spa
dcterms.bibliographicCitationShimbayashi T, Fujita K ichi. Metal-catalyzed hydrogenation and dehydrogenation reactions for efficient hydrogen storage. Tetrahedron 2020;1e8. https://doi.org/10.1016/ j.tet.2020.130946.spa
dcterms.bibliographicCitationVivancos A, Beller M, Albrecht M. NHC-based iridium catalysts for hydrogenation and dehydrogenation of Nheteroarenes in water under mild conditions. ACS Catal 2018;8:17e21. https://doi.org/10.1021/acscatal.7b03547.spa
dcterms.bibliographicCitationClot E, Eisenstein O, Crabtree RH. Computational structureactivity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem Commun 2007:2231. https://doi.org/10.1039/ b705037b. e3.spa
dcterms.bibliographicCitationTeichmann D, Arlt W, Wasserscheid P, Freymann R. A future energy supply based on Liquid Organic Hydrogen Carriers (LOHC). Energy Environ Sci 2011;4:2767e73. https://doi.org/ 10.1039/c1ee01454d.spa
dcterms.bibliographicCitationAakko-Saksa PT, Cook C, Kiviaho J, Repo T. Liquid organic hydrogen carriers for transportation and storing of renewable energy e review and discussion. J Power Sources 2018;396:803e23. https://doi.org/10.1016/ j.jpowsour.2018.04.011spa
dcterms.bibliographicCitationLi L, Manier H, Manier MA. Integrated optimization model for hydrogen supply chain network design and hydrogen fueling station planning. Comput Chem Eng 2020;134. https:// doi.org/10.1016/j.compchemeng.2019.106683.spa
dcterms.bibliographicCitationAjanovic A, Haas R. Prospects and impediments for hydrogen and fuel cell vehicles in the transport sector. Int J Hydrogen Energy 2021;46:10049e58. https://doi.org/10.1016/ j.ijhydene.2020.03.122.spa
dcterms.bibliographicCitationMu¨ ller K, Volkl J, Arlt W. Thermodynamic evaluation of € potential organic hydrogen carriers. Energy Technol 2013;1:20e4. https://doi.org/10.1002/ente.201200045spa
dcterms.bibliographicCitationMetzger JO, Eissen M. Concepts on the contribution of chemistry to a sustainable development. Renewable raw materials. Compt Rendus Chem 2004;7:569e81. https:// doi.org/10.1016/j.crci.2003.12.003spa
dcterms.bibliographicCitationShin BS, Yoon CW, Kwak SK, Kang JW. Thermodynamic assessment of carbazole-based organic polycyclic compounds for hydrogen storage applications via a computational approach. Int J Hydrogen Energy 2018;43:12158e67. https://doi.org/10.1016/ j.ijhydene.2018.04.182spa
dcterms.bibliographicCitationZou YQ, von Wolff N, Anaby A, Xie Y, Milstein D. Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nat Catal 2019;2:415e22. https://doi.org/10.1038/ s41929-019-0265-z.spa
dcterms.bibliographicCitationHe T, Pei Q, Chen P. Liquid organic hydrogen carriers. J Energy Chem 2015;24:587e94. https://doi.org/10.1016/ j.jechem.2015.08.007.spa
dcterms.bibliographicCitationDong Y, Yang M, Li L, Zhu T, Chen X, Cheng H. Study on reversible hydrogen uptake and release of 1,2- dimethylindole as a new liquid organic hydrogen carrier. Int J Hydrogen Energy 2019;44:4919e29. https://doi.org/10.1016/ j.ijhydene.2019.01.015.spa
dcterms.bibliographicCitationZhao HY, Oyama ST, Naeemi ED. Hydrogen storage using heterocyclic compounds: the hydrogenation of 2- methylthiophene. Catal Today 2010;149:172e84. https:// doi.org/10.1016/j.cattod.2009.02.039.spa
dcterms.bibliographicCitationHydrogen storage | Department of Energy, U.S. accessed, https://www.energy.gov/eere/fuelcells/hydrogen-storage. [Accessed 14 September 2020].spa
dcterms.bibliographicCitationCui Y, Kwok S, Bucholtz A, Davis B, Whitney RA, Jessop PG. The effect of substitution on the utility of piperidines and octahydroindoles for reversible hydrogen storage. New J Chem 2008;32:1027e37. https://doi.org/10.1039/b718209kspa
dcterms.bibliographicCitationWei Z, Shao F, Wang J. Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of Nheterocycles. Chin J Catal 2019;40:980e1002. https://doi.org/ 10.1016/S1872-2067(19)63336-X.spa
dcterms.bibliographicCitationReleases | the world’s first global hydrogen supply chain demonstration project - MITSUI & CO., LTD. accessed, https://www.mitsui.com/jp/en/release/2017/1224164_10832. html. [Accessed 17 September 2020].spa
dcterms.bibliographicCitationHydrogenious technologies products & projects LOHC technology applications, Germanyspa
dcterms.bibliographicCitationNiermann M, Beckendorff A, Kaltschmitt M, Bonhoff K. Liquid organic hydrogen carrier (LOHC) e assessment based on chemical and economic properties. Int J Hydrogen Energy 16 international journal of hy drogen energy xxx (xxxx) xxx Please cite this article as: Izquierdo R et al., Substituted heterocycles as new candidates for liquid organic hydrogen carriers: In silico design from DFT calculations, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2021.02.201 2019;44:6631e54. https://doi.org/10.1016/ j.ijhydene.2019.01.199.spa
dcterms.bibliographicCitationGregis G, Schaefer S, Sanchez JB, Fierro V, Berger F, Bezverkhyy I, et al. Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis. Mater Chem Phys 2017;192:374e82. https:// doi.org/10.1016/j.matchemphys.2017.02.015.spa
dcterms.bibliographicCitationOnoda M, Nagano Y, Fujita K ichi. Iridium-catalyzed dehydrogenative lactonization of 1,4-butanediol and reversal hydrogenation: new hydrogen storage system using cheap organic resources. Int J Hydrogen Energy 2019;44:28514e20. https://doi.org/10.1016/j.ijhydene.2019.03.219.spa
dcterms.bibliographicCitationVerevkin SP, Siewert R, Pimerzin AA. Furfuryl alcohol as a potential liquid organic hydrogen carrier (LOHC): thermochemical and computational study. Fuel 2020;266:117067. https://doi.org/10.1016/j.fuel.2020.117067spa
dcterms.bibliographicCitationTang C, Fei S, Lin GD, Liu Y. Natural liquid organic hydrogen carrier with low dehydrogenation energy: a first principles study. Int J Hydrogen Energy 2020;45:32089e97. https:// doi.org/10.1016/j.ijhydene.2020.08.143spa
dcterms.bibliographicCitationFan-Chiang TT, Wang HK, Hsieh JC. Synthesis of phenanthridine skeletal Amaryllidaceae alkaloids. Tetrahedron 2016;72:5640e5. https://doi.org/10.1016/ j.tet.2016.07.065.spa
dcterms.bibliographicCitationPez GP, Scott AR, Raymond A, Cooper AC, Cheng H. USA Pat.; 2005. 0106, 2005spa
dcterms.bibliographicCitationCrabtree RH. Hydrogen storage in liquid organic heterocycles. Energy Environ Sci 2008;1:134e8. https:// doi.org/10.1039/b805644gspa
dcterms.bibliographicCitationLi H, Jiang J, Lu G, Huang F, Wang Z. Onthe “reverse Gear”Mechanismof the reversible dehydrogenation/ hydrogenation of a nitrogen heterocycle catalyzed by a cp*Ir complex: a computational study. Organometallics 2011;30:3131e41. https://doi.org/10.1021/om200222j.spa
dcterms.bibliographicCitationMoores A, Poyatos M, Luo Y, Crabtree RH. Catalysed low temperature H2 release from nitrogen heterocycles. New J Chem 2006;30:1675e8. https://doi.org/10.1039/b608914cspa
dcterms.bibliographicCitationVitaku E, Smith DT, Njardarson JT. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem 2014;57:10257e74. https://doi.org/10.1021/ jm501100bspa
dcterms.bibliographicCitationPathania S, Narang RK, Rawal RK. Role of sulphurheterocycles in medicinal chemistry: an update. Eur J Med Chem 2019;180:486e508. https://doi.org/10.1016/ j.ejmech.2019.07.043spa
dcterms.bibliographicCitationBianchini C, Meli A, Vizza F. Modelling the hydrodenitrogenation of aromatic N-heterocycles in the homogeneous phase. Eur J Inorg Chem 2001;2001:43e68. https://doi.org/10.1002/1099-0682(20011)2001:1<43::AIDEJIC43>3.0.CO. 2-9.spa
dcterms.bibliographicCitationeynolds MA, Guzei IA, Logsdon BC, Thomas LM, Jacobson RA, Angelici RJ. Transition metal complexes of chromium, molybdenum, tungsten, and manganese containing h 1(S)-2,5-dimethylthiophene, benzothiophene, and dibenzothiophene ligands. Organometallics 1999;18:4075e81. https://doi.org/10.1021/om990322fspa
dcterms.bibliographicCitationZepeda TA, Pawelec B, Obeso-Estrella R, Dı´az de Leon JN, Fuentes S, Alonso-Nu´nez G, et al. Competitive HDS and HDN ~ reactions over NiMoS/HMS-Al catalysts: diminishing of the inhibition of HDS reaction by support modification with P. Appl Catal B Environ 2016;180:569e79. https://doi.org/ 10.1016/j.apcatb.2015.07.013.spa
dcterms.bibliographicCitationTo MH, Uisan K, Ok YS, Pleissner D, Lin CSK. Recent trends in green and sustainable chemistry: rethinking textile waste in a circular economy. Curr Opin Green Sustain Chem 2019;20:1e10. https://doi.org/10.1016/j.cogsc.2019.06.002.spa
dcterms.bibliographicCitationSafronov SP, Nagrimanov RN, Samatov AA, Emel’yanenko VN, Zaitsau DH, Pimerzin AA, et al. Benchmark properties of pyrazole derivatives as a potential liquid organic hydrogen carrier: evaluation of thermochemical data with complementary experimental and computational methods. J Chem Thermodyn 2019;128:173e86. https://doi.org/10.1016/j.jct.2018.07.020spa
dcterms.bibliographicCitationWechsler D, Cui Y, Dean D, Davis B, Jessop PG. Production of H2 from combined endothermic and exothermic hydrogen carriers. J Am Chem Soc 2008;130:17195e203. https://doi.org/ 10.1021/ja806721s.spa
dcterms.bibliographicCitationShuang H, Chen H, Wu F, Li J, Cheng C, Li H, et al. Catalytic dehydrogenation of hydrogen-rich liquid organic hydrogen carriers by palladium oxide supported on activated carbon. Fuel 2020;275:117896. https://doi.org/10.1016/ j.fuel.2020.117896.spa
dcterms.bibliographicCitationSantos AFLOM, Gomes JRB, Ribeiro-da-Silva Ma V. 2- and 3- acetylpyrroles : a combined calorimetric and computational study. 2009. https://doi.org/10.1021/jp810407m. 3630e8spa
dcterms.bibliographicCitationFrisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16 rev. A.03. 2016. Wallingford,CTspa
dcterms.bibliographicCitationZhao Y, Truhlar DG. Density functional theory for reaction energies: test of meta and hybrid meta functionals, rangeseparated functionals, and other high-performance functionals. J Chem Theor Comput 2011;7:669e76. https:// doi.org/10.1021/ct1006604spa
dcterms.bibliographicCitationVerma P, Truhlar DG. Status and challenges of density functional theory. Trends Chem 2020;2:302e18. https:// doi.org/10.1016/j.trechm.2020.02.005.spa
dcterms.bibliographicCitationAdvanced Search n.d. accessed, https://www.sigmaaldrich. com/catalog/AdvancedSearchPage.do. [Accessed 27 November 2020]spa
dcterms.bibliographicCitationChemSpider | Search and share chemistry n.d. accessed, http://www.chemspider.com/. [Accessed 1 February 2021].spa
dcterms.bibliographicCitationCompTox chemicals dashboard n.d. accessed, https:// comptox.epa.gov/dashboard/predictions/index. [Accessed 2 February 2021].spa
dcterms.bibliographicCitationZhao Y, Truhlar DG. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem 2005;109:5656e67. https://doi.org/10.1021/jp050536c.spa
dcterms.bibliographicCitation109:5656e67. https://doi.org/10.1021/jp050536c. [64] Chai J Da, Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 2008;10:6615e20. https:// doi.org/10.1039/b810189b.spa
dcterms.bibliographicCitationMardirossian N, Head-Gordon M ub97X-V. A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys Chem Chem Phys 2014;16:9904e24. https://doi.org/ 10.1039/c3cp54374aspa
dcterms.bibliographicCitationKosar N, Mahmood T, Ayub K. Role of dispersion corrected hybrid GGA class in accurately calculating the bond dissociation energy of carbon halogen bond: a benchmark study. J Mol Struct 2017;1150:447e58. https://doi.org/10.1016/ j.molstruc.2017.08.104.spa
dcterms.bibliographicCitationPeverati R, Truhlar DG. Screened-exchange density functionals with broad accuracy for chemistry and solidstate physics. Phys Chem Chem Phys 2012;14:16187e91. https://doi.org/10.1039/c2cp42576aspa
dcterms.bibliographicCitationNishioka M, Lee ML, Castle RN. Sulphur heterocycles in coalderived products. Relation between structure and international journal of hydrogen energy xxx (xxxx) xxx 17 Please cite this article as: Izquierdo R et al., Substituted heterocycles as new candidates for liquid organic hydrogen carriers: In silico design from DFT calculations, International Journal of Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2021.02.201 abundance. Fuel 1986;65:390e6. https://doi.org/10.1016/0016- 2361(86)90301-7spa
dcterms.bibliographicCitationTrofimov BA, Nedolya NA. Pyrroles and their benzo derivatives: reactivity. Compr. Heterocycl. Chem. III. Elsevier; 2008. p. 45e268. https://doi.org/10.1016/B978-008044992-0.00302-3spa
dcterms.bibliographicCitationLi B, Lin H, Huang L, Jiang H. Pyrroles and their benzo derivatives: synthesis. Ref. Modul. Chem. Mol. Sci. Chem. Eng.. Elsevier; 2020. https://doi.org/10.1016/B978-0-12- 409547-2.14911-Xspa
dcterms.bibliographicCitationKorostova SE, Mikhaleva AI, Trofimov BA. Bipyrroles, furyland thienylpyrroles. Usp Khim 1999;68:528e31. https:// doi.org/10.1070/rc1999v068n06abeh000451spa
dcterms.bibliographicCitationJoule JA. Five-membered ring systems: thiophenes and selenium/tellurium analogs and benzo analogs. Prog Heterocycl Chem 2020;31:177e222. https://doi.org/10.1016/ B978-0-12-819962-6.00005-1. Elsevier Ltd.spa
dcterms.bibliographicCitationVivancos A, Beller M, Albrecht M. NHC-based iridium catalysts for hydrogenation and dehydrogenation of Nheteroarenes in water under mild conditions. ACS Catal 2018;8:17e21. https://doi.org/10.1021/ acscatal.7b03547.spa
dcterms.bibliographicCitationLiu W, Jiang Y, Dostert KH, O’Brien CP, Riedel W, Savara A, et al. Catalysis beyond frontier molecular orbitals: selectivity in partial hydrogenation of multi-unsaturated hydrocarbons on metal catalysts. Sci Adv 2017;3. https://doi.org/10.1126/ sciadv.1700939spa
dcterms.bibliographicCitationSenthamaraikannan TG, Min Y, Lee JH, Song TY, Lim DH. Dehydrogenation of ethylene diamine monoborane adducts and their cyclic products (monomers, dimers, and trimers): potential liquid organic hydrogen carriers. Int J Hydrogen Energy 2021;46:7336e50.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.ijhydene.2021.02.201
dc.subject.keywordsLiquid Organic hydrogen carriers (LOHCs)spa
dc.subject.keywordsHeterocyclesspa
dc.subject.keywordsPyrrolespa
dc.subject.keywordsThiophenespa
dc.subject.keywordsDensity functional theory (DFT)spa
dc.subject.keywordsM06-HFspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.format.size18 páginas
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.