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Abstract. This work presents the identification and classification of various disturbances that 
affect the quality of energy, seen as the quality of the voltage wave (harmonics, sag, swell and 
flicker). For this, the wavelet transform is used, which allows to have characteristic patterns as 
input signals of the support vector machine, these are evaluated in their different configurations, 
bi-class, minimum output coding, error correcting output and one versus all. For all of them, in 
the first instance they were trained with 200 samples, then the results were validated with 100 
samples and finally the evaluation was made with 500 different samples, obtaining that the best 
result is presented with the minimum output coding configuration. 

1. Introduction 
The power quality that the final user receives, be it residential or industrial, must be guaranteed for the 
proper functioning of the equipment and the system itself. However, multiple phenomena, some inherent 
to the operation of the system, such as voltage variations due to the connection or disconnection of large 
loads and others produced by them in particular, those that have electronic components that introduce 
harmonics to the network, which distorts the wave. Each of these phenomena has different ways of being 
quantified which makes it difficult to compare one and one to identify which one affects the signal the 
most. 

Some studies mentioned that the appearance of active loads is characterized by their dynamic 
functioning and that this could lead to variable alterations in time that propagate along the distribution 
networks [1-3]. In order to address this problem, an analysis is presented from the perspective of wavelet 
transform analysis, to measure the reactive power of three phases, taking into account the new operating 
environment variable with time in three-phase systems. The wavelet-based approach to the measurement 
of reactive power was developed and tested under different time-varying power quality perturbations, 
including balanced and unbalanced systems that contemplate other basic small-wave functions of the 
Daubechies family. 

Some works has been carried out in which indices have been proposed that allow classification and 
quantification of the effects caused by some phenomena that affect the quality of energy [4,5], for 
example, [6] proposes an index that quantifies the deviation between the control voltage or current and 
the ideal or current tension. This index can also be used for the detection, quantification, and 
classification of the severity of any disturbance. The index can be applied to steady state variations, as 
well as to transient events. In the first case, the index is used to quantify the severity of the variation. In 
the other case, the index can be used for the activation and detection of events but also to quantify its 
severity. 
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Support vector machine have been used as classifiers in different studies and for different variables 
such as magnetic resonance brain image [7], gene expression data [8], American football head impacts 
[9], as well as electrical variables for fault diagnosis [10-12], real time health monitoring of industrial 
machine [13] and power quality disturbances [14-17]. 

2. Support vector machine 
Support vectors machine (SVM) are a set of learning algorithms based on the theory of statistical 
learning. This technique was initially a bi-class linear classifier for separable data and allows to find a 
linear model that separates the elements of both classes; later this technique was adapted to classification 
problems with non-separable data and even to solve regression problems [18]. 

2.1. Linear separation 
SVM look for a line in such a way that the elements of each class are on each side of the line, which is 
called the optimal hyperplane since it must provide the maximum separation between classes, as shown 
in Figure 1(a), the optimal hyperplane can be defined as the geometric place that is equidistant from the 
lines defined by the training samples (solid color), which are the closest between the classes and are the 
only ones necessary to obtain the optimal hyperplane and they are called support vectors and are always 
the most difficult samples to classify. Similarly, the problem with its characteristic elements is presented 
in Figure 1(b), the two classes (equal to those in Figure 1(a)), the optimal hyperplane and the maximum 
margin between it and the classes. 
 

  
(a) (b) 

Figure 1. Class separation by (a) hyperplanes and (b) optimal hyperplane. 
 

SVM classifier can be represented as the linear combination of the attributes of the applicants 
represented by x, multiplied by specific weights ω, as is shown in Equation (1): 
 

h(x) = ω'x + b = 0, (1) 
 

where ω	and	x	 ∈ 	ℝ𝐝 and d is the size of the entrance space, b is a noise term and ω' is represented 
as column vectors. 

The solution for the case will be meet, depending on the side where the samples are located with 
respect to the hyperplane [19]. Equation (2) and Equation (3) define the two classes present in the 
problem. 
 

ω'x0 + b > 0, for y0 = 1, i = 1,… , n (2) 
 

ω'x0 + b < 0, for y0 = −1, i = 1,… , n (3) 
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To solve the problem of classification, it should be considered that the support vectors, that is, the 
solid color elements in Figure 1(a). By definition, there can be no elements of the learning set within 
the margin range, therefore, Equation (1) is reduced to Equation (4). 
 

y0(ω'x + b) ≥ 1, for i = 1,… , n (4) 
 

For the points closest to the hyperplane meet that	|h(x)| = 1, then, the distance of these to the 
hyperplane is presented in Equation (5). 
 

dist(h, x) =
1
‖ω‖

 (5) 

 
To find the values of ω and b,	dist(h, x) it must be maximized between the hyperplane and the closest 

training point, fulfilling the condition expressed in Equation (5). 
Minimizing the above expression is a nonlinear programming problem that can be solved using the 

Lagrange multipliers and the Karush-Kuhn-Tucker conditions. According to this, in the case where the 
data are not support vectors, the following solution is obtained from Equation (6) to Equation (8), they 
correspond to the optimal hyperplane with its respective decision boundary: 
 

ω =?α0y0x0

A

0BC

 (6) 

 

h(x) = ω'x + b =?y0α0x0'x + b			
A

0BC

 (7) 

 

b = −
1
2E

max
HIBJC

Kω'xLM +minHIBC
Kω'xLMN (8) 

2.2. Non-linear separation 
When there is no optimal hyperplane that allows the classes to be separated from any sample, the 
transformation of the input vector to a space with a greater dimension ℝO that is called space must be 
considered [20]. 

2.3. Multiclass problems 
In order for the SVMs to solve the problem of more than two classes, Weston and Watkins proposed a 
modification of the optimization function that takes all classes into account [20]. 
 

• One-versus-all: the problem of Nc classes are broken down into so many other binary problems, 
in which each of the classes faces the rest. Thus Nc classifiers are constructed that define other 
so many hyperplanes that separate class i from the remaining	Nc − 1. 

• One-versus-one: The problem of Nc lases is broken down into Nc(Nc − 1) 2⁄  binary problems, 
where all the possible one-on-one clashes between classes are created. 

3. Results 

3.1. Bi-class 
For this case, which is the simplest in terms of classification with SVM, we proceeded to compare each 
of the classes with the other three. For each of the tests, 200 samples were used per class, as shown in 
Table 1. In this sense, the column successful predictions show how many samples were correctly 
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identified from the initial 200. In that sense, having 200 as a result indicates that the SVM was able to 
identify all the samples without any error. 
 

Table 1. Results for bi-class classification. 
Classes Successful predictions % Error 

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Harmonics 
Swell 189 192 5.5 4.0 
Sags 187 197 6.5 1.5 
Flicker 192 189 4.0 5.5 

Swell 
Harmonics 192 189 4.0 5.5 
Sags 198 200 1.0 0.0 
Flicker 194 185 3.0 7.5 

Sags 
Harmonics 197 187 1.5 6.5 
Swell 200 198 0 1.0 
Flicker 195 161 2.5 19.5 

Flicker 
Harmonics 189 192 5.5 4.0 
Swell 200 194 0.0 3.0 
Sags 161 195 19.5 2.5 

3.2. Multiclass 

3.2.1. Minimum output coding. For this classifier, the minimum number of bits nb is used to encode nc 
as shown Equation (9): 
 

nS = logW nO (9) 
 

3.2.2. Error correcting output. This coding scheme uses redundant bits. Typically, the limit of binary 
classifiers nS is given by Equation (10): 
 

nS ≤ 15⌈logW nO⌉ (10) 
 

However, it is not guaranteed to have a nS	valid representations of the nO classes for all combinations. 
This routine takes longer execution time and takes more space in memory. 
 
Table 2. Results for SVM types. 

 Training Validation Evaluation 
 Harm Swell Sags Flicker Harm Swell Sags Flicker Harm Swell Sags Flicker 

One 
versus all 5.2 0.2 4.8 12.2 3.5 0.5 4.5 16.5 5.9 0.5 4.4 14.1 

Error 
correcting 
output 

5.0 0.2 2.6 12.0 3.5 0.5 2.5 17.5 5.7 0.3 2.4 13.8 

Minimum 
output 
coding 

3.6 0.2 2.2 10.0 3.5 0.5 2.5 11.0 4.4 0.3 2.3 12.4 

3.2.3. One versus all. In this case, each of the nO binary classifiers are trained to identify the combination 
of each of the nO classes with the union of the others. 

In Table 2 the results for all different types of SVM used in this work are shown. These results are 
presented as percentage for each simulation: Training (200 samples), validation (100 samples) and 
evaluation (500 samples). In the same way, is possible to observe that the signals with flicker have the 
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highest errors, of the order of 10%, followed by the signals with harmonics, whose errors are between 
3% and 5%. On the other hand, swells present the smallest errors in the order of 0.5% above sags with 
2.6% errors. 

Another relevant aspect that can be obtained from Table 2 is that the one versus all configuration is 
the one that presents the biggest errors in the three moments (training, evaluation and validation) with 
an error weighted by the number of samples at each stage of 6.4%. 

4. Conclusions 
The problem of classifying the four power quality disturbances analyzed (harmonics, sag, swell and 
flicker) was addressed in two different ways, the first one with the SVM bi-class, which consisted in 
making a comparison of the class 1 (any one is selected) versus class 2 (the other three different signals 
than the one selected for class 1). The second way was to use three different mechanisms available to 
convert the problem into a multiclass. 

Analyzing each class individually in the support vector machine bi-class, signals with sags are those 
that present the best result, with a percentage of error of 1.33% while the flicker have the highest error 
with 9.6%, in the same sense, for this classifier the overall error of the signals with harmonics is 5.3% 
and that of the swells is 2.6%. 

For the multiclass classification, is important to highlight that the class 4, corresponding to flicker is 
the one that presents the greatest errors compared to the other classes (higher than 10% in all cases), this 
possibly occurs because the pattern that identifies it is the most complex of those delivered to the SVM 
classifier. On the other hand, swells represent the class with the lowest classification error, having 0.2%, 
0.5% and 0.3% as an error for training, validation and evaluation, respectively. 

When analyzing the results of the three configurations of the support vector machine multiclass, 
minimum output coding is the one with the best results, with errors of 4.0%, 4.3% and 4.6% for training, 
validation and evaluation respectively. Thus, the overall error weighted by the number of samples is 
4.6%. 
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