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Abstract. Compressing information, such as voice, allows freeing up memory space, better 
utilizing bandwidth, in other words taking advantage of resources more efficiently in a time 
where technologies such as Voice over Internet Protocol are booming and the demand for 
information it requires higher speeds and quality. Therefore, this paper presents the acquisition 
and digital processing of voice signals, as well as the application of the discrete cosine transform 
and the wavelet transform using Matlab software version 2017b, licensed by the Technological 
University of Bolivar. Likewise, a criterion is established in order to eliminate little relevant 
information without affecting the quality of the output signal for which indicators such as the 
signal to noise ratio and the mean square error are calculated. 

1. Introduction 
The compression of data, particularly the human voice, has been a constant problem, because more and 
more information is available to be sent on the same channel with its respective fixed bandwidth [1-4]. 
An example of this is cellular networks where many users share the same bandwidth. Compression 
allows more users to share the system at any given time. However, the compression of the human voice 
poses significant challenges beyond the introduction of noise, since in addition to the message itself, the 
voice can transmit feelings and emotions that in most cases can significantly alter the meaning of the 
message transmitted. That is why the voice compression techniques [5-7] and [8] must allow, in addition 
to the obvious reduction in the size of the information, that the receiver can identify the full meaning of 
the message transmitted. Some techniques used in voice compression have also been used in image 
compression [9-11]. In [12] the use of wavelet transform is proposed to compress ECG signals by 
parameterizing wavelet mothers, achieving a reduction in the information rate without damaging the 
relevant diagnostic data when reconstructing the signals. This technique was tested in the MIT-BIH 
arrhythmia database and it was found that there was low distortion with a good compression ratio, 
preserving the important forms and amplitudes of the ECG. The described method is flexible to control 
the quality of the reconstructed signals and the volume of the compressed signals, by establishing an 
objective quadratic mean error and a priori compression ratio. Taking into account the above, in this 
paper, a methodology for signal compression will be provided based on eliminating redundancy between 
neighboring samples, that is, representing the data by the smallest possible number of coefficients within 
an acceptable loss of visual quality. 
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2. Transforms 

2.1. Discrete cosine transform 
The discrete cosine transform (DCT) is a variation of the discrete Fourier transform where the image is 
broken down into sums of cosines (and not of sines and cosines as in Fourier's), therefore, it is a real 
transform, it is given by the Equation (1): 
 

C(u) = α(u)' f(x)cos	 .
(2x + 1)uπ

2N 4
567

89:

 (1) 

 
As well as, the inverse transform is defined by Equation (2). 
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2.2. Wavelet transform 
It is possible to analyze a signal in time and frequency using a technique called multiresolution analysis, 
this analyzes the signal for different frequencies with different resolutions [13]. This analysis is designed 
to provide good temporal resolution and poor frequency resolution for high frequencies and good 
frequency resolution and low time for low frequencies. In addition, it is the basic idea behind the discrete 
wavelet transform (DWT) and from it is the great advantage that it presents against the Fourier transform 
with windows. In the latter case, once the scale of our window has been chosen, the entire signal will be 
analyzed with the same resolution, while in the case of the DWT there is a variable resolution [14]. This 
type of analysis is based on obtaining the spectral components of a signal as amplitudes of a series of 
special functions, called wavelets. It is necessary that the set of functions used form a base, which 
implies that any signal has a single possible decomposition and that this decomposition can then be 
reversed obtaining the original signal [15]. For the discrete case, the DWT is defined by Equation (3): 
 

C[j, k] = ∑ f[n]ΨS,T[n]U∈W , (3) 
 

where the mother wavelet is presented in Equation (4): 
 

ΨS,T[n] = 	2
6S=	. ΨY26S	n − kZ		j, k	 ∈ Z (4) 

 
The parameters τ, s are defined according to the dyadic scale i.e. in powers of	2U, so that τ = 2Sk and 

s = 2S [15]. That is, the DWT will consist of multiplying the study signal (f[n]), by the wavelet on each 
scale j while the latter travels along the entire time axis. The process is repeated, but with different scales 
until the desired number of bands or scales is obtained [13]. The analysis can be interpreted as a measure 
of the similarity between the base functions (ΨS,T[n]) and the study signal (f[n]), in their frequency 
content. Therefore, the calculated coefficients (C[j, k]) (Equation (3)) indicate how close the signal is to 
the wavelet on a given scale. If an orthonormal base is available, the decomposition can be undone and 
the original signal obtained, which is known as inverse transform and it is defined by Equation (5). 
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𝑓[𝑛] =''𝐶[𝑗, 𝑘]. Ψb,c[𝑛]

c∈db∈d

 (5) 

 
That is, the original signal (𝑓[𝑛]) is recovered, from the wavelet base (Ψb,c[𝑛]), and the coefficients 

obtained by the DWT (𝐶[𝑗, 𝑘]). 

3. Methodology 

3.1. Acquisition of the input signal 
In Figure 1(a) you can see the input signal as a function of the time that corresponds to the phrase “hello 
how are you”. 

3.2. Discrete cosine transform / wavelet transform application 
In Figure 1(b) the distribution of the coefficients from the application of the DCT is observed, it is 
important to note that, compared to the input signal, the DCT has greater amplitude but less data, making 
the transmission of this, more efficient versus sending the original signal. Figure 1(c) shows the DWT 
of the input signal with a level of 2; It is important to note that it can be seen that the transform contains 
less data than the input signal, as happened in the application of the DCT. 

3.3. Compression 
In the case of study, compression is understood as the elimination of little relevant information, while 
maintaining an acceptable level of the output signal, this acceptable level refers to making the output 
signal understandable. To achieve this, it is necessary to eliminate all the terms of the matrix of 
coefficients that are between ± 30% of the maximum value. 
 

   
(a) (b) (c) 

Figure 1. (a) Input signal, (b) DCT, and (c) DWT. 

3.4. Evaluation of the quality of the reconstructed signal 
To assess the quality of the output signal, the signal to noise ratio (SNR) that is defined by Equation (6) 
and the mean square error with respect to the original signal, defined by Equation (7), will be used. 
 

SNR =
Psignal
Pnoise

 
 

(6) 

EMC =
1
n
'(yop − yp)=
U

p97

 (7) 
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4. Results 

4.1. System implementation using discrete cosine transform 
By applying the IDCT to the signal shown in Figure 1(b), Figure 2(a) is obtained in response, it can be 
noted that this signal is identical to the input signal (Figure 1(b)) and that there is no offset in them. The 
mean square error between these two signals has a value of 4.797x10-17, which, in practice, is equivalent 
to zero, therefore it can be indicated that the process carried out does not present information loss and It 
is of excellent quality. Figure 2(b) shows the compressed signal and with the terms removed. The way 
in which the amount of information contained in the coefficients before and after truncation is reduced 
is easily observed, although this reduction of information does not necessarily constitute significant 
losses in the output signal. In Figure 2(c) the output signal is shown before the input of the trimmed 
data; In this case, the mean square error is found again, resulting in an error of 3.53%, this being an 
acceptable error since when reproducing the output signal, it is still understandable. 
 

   
(a) (b) (c) 

Figure 2. (a) Output signal DCT, (b) DCT (data cropping) and (c) IDCT (data cropping). 

4.2. System implementation using discrete wavelet transform 
The signal presented in Figure 3(a) is obtained by applying the IDWT to the signal in Figure 1(b); As 
expected, this signal has a very low error, similar to that presented in the case of the IDCT without 
elimination of coefficients. 

Figure 3(c) shows the output signal of the system after the wavelet inverse transform has been 
applied, having as input the signal shown in Figure 3(b) It can be seen that in this case the output signal 
is much more similar to the signal input that in the case of the DCT (See Figure 2(c)), even in the case 
of wavelet, the amplitudes of the input and output signal are equal, while in the DCT these amplitudes 
differ, for this transformed the average error quadratic is 1.52% which in turn is much lower than the 
system error with DCT. 
 

   
(a) (b) (c) 

Figure 3. (a) Output signal DWT, (b) DWT (data cropping) and (c) IDWT (data cropping). 
 

Table 1 shows the comparison between the lengths, power, SNR and MSE of each of the signals used 
and processed in this paper. In this sense it can be seen that it is DCT WDC that has the worst MSE 
result, however, its SNR is the best of all signals. On the other hand, although the SNRs of the signals 
with DWT and DWT with DC are low, their MSE are much lower still and the signal length is reduced 
by half compared to the DCT. 
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Table 1. Length and power of the signals under studio. 
 Length Power SNR MSE 
Original Signal 12000 0.0024 - - 
DCT 12000 0.0013 0.0000 0.0000 
DCT (data cropping) 12000 0.0008 3.1519 3.3338 
DWT 6003 0.0015 0.1036 0.7572 
DWT (data cropping) 6003 0.0012 0.4339 1.5203 

5. Conclusions 
The DCT and wavelet compression techniques were simulated, obtaining the results for each of them. 
At this point it is important to highlight that the technique that presents the best results is the one used 
by the avelet transform because in this case the mean square error between the input and the output 
signal is lower than in the case of the DCT, in addition to this, the wavelet transform does not need an 
additional block for compression of the data due to its own form, since every time the data is subjected 
to filters it passes high and passes low the data of minor relevance is eliminated. On the other hand, the 
mean square errors were calculated for the cases where the transformed and the reverse transformed 
were applied successively, obtaining very low errors, of the order of 4.3797x10-15%. In addition to the 
mean quadratic error, the signal-to-noise ratio indicator was calculated, which allowed us to verify the 
quality of the output signal, complemented by the figure of the mean square error, resulting in the 
technique with the best response being the one that uses the discrete wavelet transform. 
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