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A B S T R A C T

This paper presents a reformulation of the power flow problem in low-voltage dc (LVDC) power grids via Taylor's
series expansion. The solution of the original nonlinear quadratic model is achieved with this proposed for-
mulation with minimal error when the dc network has a well defined operative conditions. The proposed ap-
proach provides an explicit solution of the power flow equations system, which avoids the use of iterative
methods. Such a characteristic enables to provide accurate results with very short processing times when real
operating scenarios of dc power grids are analyzed. Simulation results verify the precision and speed of the
proposed method in comparison to classical numerical methods for both radial and mesh configurations. Those
simulations were performed using C++ and MATLAB, which are programming environments commonly
adopted to solve power flows.

1. Introduction

1.1. General context

Low-voltage dc (LVDC) power grids are a promising distribution
energy technology specially under the concepts of smart grids and
microgrids [1]. An LVDC is essentially a microgrid operating with direct
current, which can interconnect multiple distributed energy resources
such as: energy storage devices, electric vehicles, distributed generators
and consumers [2,3]. In LVDC, the concept of electrical substation is
replaced by an ac–dc power converter as depicted in Fig. 1. In such an
example the microgrid supplies three different types of load, where
Load 1 corresponds to a constant impedance load, Load 2 models a
constant power consumption and Load 3 represents a dynamic dc load.
Moreover, that microgrid also includes two renewable energy resources
and an energy storage device [4].

To study the steady state behavior of any power grid, it is necessary
to perform a power flow analysis [5], which solves iteratively the
mathematical model of the network for an arbitrary operating point
[6]. In the case of dc power grids, the set of equations representing the
power flow problem corresponds to a quadratic and non-convex set of
equations with multiple possible solutions [4]. To the best of the

authors knowledge, currently there is not reported in the literature an
explicit solution for such a set of equations describing the dc power
flow. Taking into account the accelerated grow of dc microgrids dis-
cussed afterwards [4,7,8], that gap in the dc power grids analysis must
be addressed.

1.2. Motivation

The LVDC grid is a suitable solution to manage clean energy re-
sources [9], which is a topic with growing interest in the research
community due to the positive environmental impact of renewable
energy, but also due to the possibility of providing electrical service in
off-the-grid zones. For planning and management of LVDC systems, it is
required to perform a power flow analysis, which enables to calculate
different technical and operative aspects of the grid, such as: voltage
regulation, energy losses and conductor's chargeability, among others
[10]. However, the process to solve the set of quadratic equations
modeling the dc power flow formulation is not a trivial task, which is
mainly due to the non-convex characteristic of the solution space [6].
Therefore, to determine the steady state solution of the LVDC, iterative
methods have been used. This is the case of the gradient method
adopted in [11], the Newton–Raphson method used in [12,13] and the
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successive approximation algorithm reported in [4], among others.
The main drawback of iterative methods is the long processing times

required to solve the power flow formulation [14]; this taking into
account that such equations system must be solved several times in both
planning and operation processes [15,16]. Therefore, this paper pro-
poses a non-iterative method to solve the power flow equations in LVDC
microgrids under the presence of constant-power loads. This method is
designed to be applied to dc grids with radial or mesh configurations of
any size and load condition, offering accurate enough results with low-
computational effort, hence with shorter processing times in compar-
ison with the iterative methods commonly adopted for this problem.

1.3. Brief state-of-the-art

In the specialized literature there is an increasing interest in LVDC
under the microgrid concept, since this electrification technology al-
lows to provide electrical service to remote areas using renewable en-
ergy resources [17]; moreover LVDC enable to improve the efficiency of
classical urban distribution networks via hybrid ac–dc interconnections
[18]. The works reported in [1,19] review the state-of-the-art about the
importance of dc microgrids, analyzing the challenges and opportu-
nities in terms of optimization and control. Those works identify the
power flow analysis as an essential tool to perform control and opti-
mization processes. Following this line, the authors of [12,20] present
adaptations of classical methods such as Newton–Raphson or Gauss–-
Seidel to this problem.

In the case of convex and linear formulations, there exist multiple
references mainly devoted to ac grids [5,21]. Concerning dc grids, the
work reported in [22] presents a convex reformulation of the power
flow in high-voltage dc grids via semidefinite programming. One of the
most analyzed problems in dc grids is the presence of constant power
loads; for this reason the work reported in [4] defines the necessary
conditions to guarantee the uniqueness of the solution of dc power flow
equations independent of the solution method. Moreover, the works
reported in [6,23] present the sufficient conditions to guarantee the
existence of the solutions of power flow problems in ac and dc grids
with constant power loads. Those works were carry out using linear
matrix inequalities. Multiple linear techniques have been developed for
solving the power flow problem in ac power grids [24–26]. This is the
case of the work reported in [4], in which the Lauren series has been
adopted for linearizing the power flow equations by using their com-
plex representation. In [27] is proposed a linear method based on the
Jacobian approach for radial distribution network with lateral deriva-
tions and distributed energy resources. Similarly, in [28] it is presented
a linear power flow representation, which is based on a curve-fitting
technique to derive a voltage-dependent load model to split the loads as
a combination of impedances and current sources; moreover, numerical
approximations on the imaginary part of the nodal voltages are also

considered.
However, to the best of the authors knowledge, there is not reported

in literature a widely accepted linear approximation to solve the power
flow equations in dc power grids; which is the gap this paper is intended
to fulfill.

1.4. Contribution and scope

This paper proposes a linear approximation method to solve ex-
plicitly the power flow problem in dc power grids. This method does
not require any iterative process to determine the power flow solution,
which provides a reduced computational effort when compared with
iterative approaches. Moreover, the result is mainly oriented to LVDC
grids which encompasses dc distribution, dc microgrids and nanogrids,
independently of the topology and load conditions. Therefore, both
radial and mesh grids can be analyzed with the proposed method.

A general expression is developed to obtain the solution of the
power flow equations in LVDC grids, which requires only the ad-
mittance nodal matrix of the grid to be properly defined. Moreover,
computational comparison of the proposed linear approximation with
the classical non-linear methods and convex relaxation is made by using
both C++ and MATLAB implementations to validate the robustness
and advantages of the proposed solution.

1.5. Document organization

The remain of paper is organized as follows: Section 2 presents both
the classical nonlinear dc power flow formulation and the proposed
linear approximation based on a Taylor series expansion. Then, Section
3 presents the general characteristics of the test system and the com-
parative methods. Afterwards, the simulation considerations, results
and analyses are provided in Section 4. Finally, the conclusions given in
Section 5 close the paper.

2. Power flow formulations

This section presents the derivation of the classical power flow
equations and the proposed linear reformulation for dc power grids.
Those models are based on the realistic assumption that the dc grid has
well defined operative conditions in terms of quality service and elec-
trical connections [4].

2.1. Network structure and considerations

Considering a dc power grid formed by a set of = … N{1, 2, , }�

nodes, it can be divided in three subsets depending on node nature:
constant voltage nodes or generator nodes � , constant impedance
nodes � and constant power nodes � , hence = ∪ ∪{ }� � � � . For
practical purposes, the sets � and � can be compacted in a unique set
named demands, which is defined as � . The set of branches is re-
presented by = ×� � � .

Moreover, the following practical considerations hold [22]:

Assumption 1. The dc power grid contains a least one constant voltage
node.

Assumption 2. The graph is connected, this is, there are not isolated
nodes on the dc power grid.

Assumption 3. The voltage profile solutions are contained within the
interval Vmin ≤ V ≤ Vmax, where Vmin > 0.

Assumption 4. The dc power grid is operating under steady state
conditions, this is, there are not external perturbations.

Fig. 1. Typical interconnection of distributed energy resources in a LVDC mi-
crogrid.
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2.2. Mathematical relations and nonlinear formulation

The classical formulation of the power flow equations for dc grids is
based on the admittance nodal matrix, which relates the nodal voltages
and the nodal injected currents as follows [22]:
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In (1) Ik corresponds to the injected current at node k, while Vk

represents its nodal voltage, Gki is the conductance value associated to
the physical interconnection between nodes k and i, and Gkk corre-
sponds to the algebraic sum of all conductances connected at node k,
respectively. In this model Gkk contains all the information of the line
resistive effects related to the kth node, including the possible constant
resistive loads, which reduces the power flow analysis to constant
power nodes or step-nodes.

The instantaneous power in electrical networks corresponds to the
product between the voltage and current on a specific point of the
network, in case of the k-th node the electrical power can be defined as:

− = = ∀ ∈P P P V I k, ,k
G

k
D

k k k � (2)

where Pk
D and Pk

G represent the active power demanded and generated
at node k, respectively, while Pk corresponds to the total active power
injected at node k. If the kth row of (1) is replaced in (2), the power flow
equations take the form presented in (3).

∑= ∀ ∈
∈

P V G V k,k k
j

jkj �

� (3)

2.3. Linear reformulation of the power flow

The linear approximation of the power flow equations is based in
the Taylor's series expansion [29], for this reason the following con-
sideration need to be fulfilled for each generator node modeled as
constant voltage node:

Assumption 5. The node has the capability of generating or consuming
the amount of active power needed to support the active power balance
of the grid.

Under the light of the previous assumptions, expression (1) is re-
written as follows [5]:
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Eq. (4) IG represents the currents provided by the generators, ID
represents the currents demanded by the loads (constant impedance
and constant power nodes), VG corresponds to the voltage values at the
generators terminals, which are known, VD corresponds to the voltage
profile in all demand nodes of the network, GG represents the com-
ponent of the conductance matrix associated to the generator inter-
connections, DD is the component of the conductance matrix asso-
ciated to the load interconnections, and = T

GD DG  corresponds to the
component of the conductance matrix relating the generators and loads.

Assumption 5 means that the generators provide the current needed
to keep constant the terminals voltage, hence those are considered ideal
devices. The generators voltages are calculated using VG/Vbase, where
Vbase is the base voltage assigned to the microgrid; in the case that a
generator voltage is equal to Vbase, that generator voltage value is 1 p.u.
Moreover, the voltage profiles of the ideal generators are known, which
implies that the first row of Eq. (4) is not required in the linear for-
mulation. Therefore, Eq. (4) is simplified as follows:

= +I V VD G DDG DD  (5)

2.3.1. Taylor's series expansion
To obtain an approximated linear model for the power flow equa-

tions system, it is necessary to obtain an equivalent linear form for
expression (2). For linearization purposes, the inverse value of the
voltage profile at the kth node was considered as a nonlinear term, this
taking into account the alternative form of (2) given in (6).

=P
V

Ik

k
k (6)

The nonlinear term
V
1
k
in (6) is approximated using a first-order

(linear) Taylor's series expansion around the operating point Vk
0. Such a

term is selected to be linearized because Vk does not take zero values;
this is not the case of the current variable, which can take zero values in
all step-nodes. Moreover, Vk is limited as it imposed in Assumption 3.
The linearization of the term

V
1
k
is based on the general form of the

Taylor's formula for a continuous nonlinear function f(x) around x0 [29]
presented below:
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Applying the definition given in (7) for a first-order expansion, i.e.
=n {0, 1}, the nonlinear term

V
1
k
around Vk

0 is approximated as follows:
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Finally, the linear approximation of the active power balance given
in (9) is obtained by substituting (8) into (6).
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2.3.2. Explicit calculation of the voltage profile
It must be noted that the Taylor's linearization is applied only to the

nodes with unknown voltage, therefore the nodes with generators ex-
hibiting voltage control capability are not included in the linearization
process because their voltages are known [5]. Under the light of the
previous analysis, expression (2) is reduced to = −P Pk k

D, hence the
linear approximation of the active power balance (9) is rewritten as it is
given in (10), in which PD is a vector including all constant power loads
ordered in the same form previously defined in (4).

− + =− −V P V V P I2diag( ) (diag( ) ) diag( )D D D D D D
0 1 0 1 2 (10)

The compact form (10) uses the diagonal operator presented below:
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Taking advantage of the diagonal operator (11) property, expression
(12) is obtained:

− + =− −V P V P V I2diag( ) (diag( ) ) diag( )D D D D D D
0 1 0 1 2 (12)

Finally, replacing the ID definition given in (5) into (12) leads to the
linear approximation of the VD solution given in (13).

= − +− − −V V P V V P((diag( ) ) diag( ) ) ( 2diag( ) )D D D G D D
0 1 2

DD
1

DG
0 1  (13)

Expression (13) enables the explicit calculation of the voltage pro-
file in the demand nodes of a dc power grid, hence iterative processes
are not required. This characteristic enables to reduce, significantly, the
computational time required to find the voltage profile in comparison
with other solutions based on recursive algorithms. Moreover, this
linear approach can be applied to both radial and mesh dc power grids.

O.D. Montoya et al. Electric Power Systems Research 163 (2018) 375–381

377



The following section presents the evaluation of the accuracy and
speed of the proposed linear method using simulations.

3. Test systems and comparison methods

3.1. First test system

The first test system corresponds to the 10-node LVDC microgrid
proposed in [4]. The electrical configuration and the network para-
meters of this test system are reproduced in Fig. 2 and Table 1, re-
spectively.

The fourth column of Table 1 corresponds to the type of the re-
ceiving node (second column), while the fifth column corresponds to
the value of the resistive or constant power load located at that node.

This test system was selected to validate the capability of applying
the proposed linear analysis to both radial and mesh configurations: the
radial topology is evaluated by preserving the configuration described
in [4]; the mesh topology is evaluated by adding two lines to the test
system following the connections and parameters given in Table 2.

3.2. Second test system

This test system is formed by 21 nodes with multiple constant power
loads and small distributed generators. This system was originally
presented in [13] for analyzing the convergence of the Newton's
method in the power flow problem of DC power grids. Fig. 3 presents
the test system configuration and Table 3 shows the network para-
meters and power consumption.

3.3. Comparison methods

To validate the effectiveness and robustness of the proposed linear
method, three additional solution methods for the power flow equa-
tions in dc power grids, which are widely adopted in literature, are
implemented for comparison purposes. To provide a fair comparison,

techniques able to solve the problem of power flow for both radial and
mesh topologies were considered. This enable to test the proposed
linear approximation for any possible configuration of the DC power
grid.

The first method corresponds to the classical Newton–Raphson
method [30], which solves the power flow equations given by (3) using
successive approximations through the inverse of the Jacobian matrix.
This numerical method finds a voltage profile using a recursive process
as it is reported in [12], in which the Jacobian matrix of the dc power
flow formulation is formed by the partial derivatives of the voltage
variables only.

The second comparative method corresponds to the convex re-
formulation of the power flow equations given by (3) as a semidefinite
programming problem [22]. This approach transforms the classical
nonlinear set of dc power flow equations into a linear approximation
that guarantees a unique solution [31]. The quality of the convex ap-
proximation can be measured using eigenvalue analysis as it is pro-
posed in [22]. It must be noted that the convex reformulation, labeled
in this paper as “Convex approximation”, also uses a recursive process
as reported in [32].

The third comparative method is the Gauss–Seidel numerical solu-
tion. This was the first numerical method applied in specialized lit-
erature for solving power flow problems [33]. Moreover, this method
requires a simple implementation since it does not require matrix in-
versions to determine the voltage profile, but it guarantees numerical
convergence for any power flow case under normal operating

Fig. 2. Electrical configuration for the 10-bus test feeder.

Table 1
Electrical parameters of the 10 bus test system.

From To R (pu) Type of node P (pu)–R (pu)

1 (slack) 2 0.0050 Step-node –
2 3 0.0015 P −0.8
2 4 0.0020 P −1.3
4 5 0.0018 P 0.5
2 6 0.0023 R 2.0
6 7 0.0017 Step-node –
7 8 0.0021 P 0.3
7 9 0.0013 P −0.7
3 10 0.0015 R 1.25

Table 2
Proposed connections for testing the mesh grid case.

From To R (pu) From To R (pu)

5 10 0.0035 8 10 0.0025

Fig. 3. Electrical configuration for the 21 bus test system.

Table 3
Electrical parameters of the 21 bus test system.

From To R (pu) P (pu) From To R (pu) P (pu)

1 (slack) 2 0.0053 −0.70 11 12 0.0079 −0.68
1 3 0.0054 0.00 11 13 0.0078 0.10
3 4 0.0054 −0.36 10 14 0.0083 0.00
4 5 0.0063 −0.04 14 15 0.0065 0.22
4 6 0.0051 0.36 15 16 0.0064 −0.23
3 7 0.0037 0.00 16 17 0.0074 0.43
7 8 0.0079 −0.32 16 18 0.0081 −0.34
7 9 0.0072 0.80 14 19 0.0078 0.09
3 10 0.0053 0.00 19 20 0.0084 0.21
10 11 0.0038 −0.45 19 21 0.0082 0.21
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conditions (steady state operation), because the conductance matrix is
diagonal dominant [34].

4. Computational validation

The simulations were carried out in a desk-computer with an INTEL
(R) Core(TM) i5-3550 processor at 3.50 GHz, 8 GB RAM, running a 64-
bits Windows 7 Professional operating system. The numerical valida-
tion of the proposed linear approximation was made using two different
programming environments. The radial configurations were evaluated
using C++, which is a classical programming language commonly
used to solve power flows [35–37]. In this programming language were
implemented the Gauss–Seidel, Newton–Raphson and the proposed
linear method. The mesh configurations were evaluated using the
MATLAB environment, which makes possible to solve convex models,
via semidefinite programming, using the CVX toolbox [32]. Moreover,
the proposed linear approximation, the Gauss–Seidel and New-
ton–Raphson methods were also implemented in MATLAB to provide a
fair comparison in terms of accuracy and computational environment.

4.1. Analysis of the dc power grid with radial configurations

This section illustrates the application of the proposed technique to
solve power flow in radial systems, for this case both 10-bus and 21-bus
systems are considered. The performance of the proposed linear ap-
proximation is compared with the Newton–Raphson [13] and Gauss–-
Seidel [4] numerical methods.

4.1.1. 10-bus test system
This simulation scenario considers the dashed lines in Fig. 2 dis-

connected from the main grid, which generates a radial configuration in
the test system. The voltage profiles calculated with the proposed linear
approach, and using the comparison methods, are reported in Table 4.

Both Newton–Raphson and Gauss–Seidel methods report almost the
same values per node in Table 4, in which the error of the Gauss–Seidel
method with respect to the Newton–Rahpson method is around
2.6872 × 10−9%. Similarly, the proposed linear method exhibits a
maximum error equal to 4.9849 × 10−6%, which is observed in the
less-significant digits of Table 4. For practical purposes, the accuracy of
the linear approximation is satisfactory enough taking into account the
precision of the experimental data commonly used to parametrize the
model [5]. Moreover, the explicit representation of the proposed linear
method avoids the use of iterative solvers, hence the processing times
are significantly lower in comparison with the classical methods: after
1000 consecutive evaluations of the dc power flow, the mean value of
the processing time required by the Newton–Raphson was 51.02 μs
with a standard deviation of 2.70 μs; the Gauss–Seidel required
167.80 μs with a standard deviation of 13.00 μs; while the proposed

linear solution required 9.34 μs with a standard deviation of 0.50 μs.
Therefore, the proposed method only requires 5.56% and 18.29% of the
time required by the Gauss–Seidel and Newton–Raphson methods, re-
spectively.

In order to evaluate the robustness of the proposed solution under
critical load scenarios, Table 5 reports the behavior of the voltage
profile in the node 9 (node with the worse voltage profile) when the
load and distributed generation increase from 1 to 10 times their
nominal values. The results show that the Gauss–Seidel follows the
solution provided by the Newton–Raphson with a negligible error. Si-
milarly, the proposed linear approximation accurately follows the so-
lution generated by both classical methods, with a negligible error,
when the load and generation capacity grows below 6 times their
nominal values. For variations in the load and generation capacity
equal or higher than 6 times their nominal values, the proposed linear
method exhibits a slightly higher error; for example, a maximum error
equal to 0.44% is obtained when the generation capacity and load
consumption have been incremented 10 times. Such results put into
evidence the robustness and efficiency of the proposed explicit method.

4.1.2. 21-bus test system
This simulation scenario considers the 21-bus system depicted in

Fig. 3, which presents a radial configuration. Table 6 presents the
voltage profiles obtained with the Newton–Raphson, Gauss–Seidel and
proposed linear methods.

Similarly to the previous case, Table 6 reports a negligible differ-
ence (around 2.8070 × 10−9%) between the Gauss–Seidel and New-
ton–Raphson methods. The proposed linear method provides an

Table 4
Voltage profiles for all nodes of the 10-bus test system for the radial topology
(p.u.).

Node Newton–Raphson Gauss–Seidel Linear approx.

1 1 1 1
2 0.983429492 0.983429494 0.983433344
3 0.981030463 0.981030465 0.981034755
4 0.981798881 0.981798883 0.981803314
5 0.982714712 0.982714714 0.982718867
6 0.981360772 0.981360775 0.981365053
7 0.980665875 0.980665878 0.980670477
8 0.981307876 0.981307878 0.981312250
9 0.979737055 0.979737057 0.979742042
10 0.979854637 0.979854640 0.979858924
8 0.981307876 0.981307878 0.981312250
9 0.979737055 0.979737057 0.979742042
10 0.979854637 0.979854640 0.979858924

Table 5
Voltage profile in p.u. at node 9 for different increments of the capacity of
generation and consumption.

Load increasing Newton–Raphson Gauss–Seidel Linear approx.

1 0.979737055 0.979737000 0.979742042
2 0.966725704 0.966726000 0.966753509
3 0.953351095 0.953351000 0.953435495
4 0.939581319 0.939581000 0.939775508
5 0.925379521 0.925380000 0.925760413
6 0.910702762 0.910703000 0.911376398
7 0.895500509 0.895501000 0.896608924
8 0.879712621 0.879713000 0.881442683
9 0.863266578 0.863267000 0.865861541
10 0.846073605 0.846074000 0.849848481

Table 6
Voltage profiles in all nodes of the 21-bus test system in (p.u.).

Node Newton–Raphson Gauss–Seidel Linear approx.

1 1 1 1
2 0.996276133 0.996276133 0.996276185
3 0.999870879 0.999870878 0.999871048
4 0.999651190 0.999651189 0.999651354
5 0.999399038 0.999399037 0.999399202
6 1.001484468 1.001484467 1.001484628
7 1.001624231 1.001624230 1.001624243
8 0.999093938 0.999093937 0.999093952
9 1.007342248 1.007342247 1.007341953
10 0.997448213 0.997448212 0.997448775
11 0.993493968 0.993493967 0.993494969
12 0.988057035 0.988057034 0.988058821
13 0.994278457 0.994278455 0.994279431
14 1.002291131 1.002291129 1.002291349
15 1.002793986 1.002793983 1.002794128
16 1.001885027 1.001885024 1.001885107
17 1.005051035 1.005051032 1.005051034
18 0.999128625 0.999128622 0.999128707
19 1.006238881 1.006238879 1.006238866
20 1.007988901 1.007988898 1.007988774
21 1.007947304 1.007947302 1.007947181
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accurate calculation of the voltage profiles with a maximum error equal
to 1.7058 × 10−6%, which is enough for practical analyses. In this
second test, the proposed linear approximation required 11.49% and
16.12% of the calculation time needed to process the Gauss–Seidel and
Newton–Raphson methods, respectively. Therefore, the proposed so-
lution provides a satisfactory trade-off between accuracy and proces-
sing speed in comparison with the classical Gauss–Seidel and New-
ton–Raphson techniques.

To evaluate the robustness of the proposed solution under critical
load scenarios, Table 7 presents the behavior of the worse nodal voltage
profile (node 12), when the loads and distributed generators increase
from 1 to 10 times their nominal values. The results show that both
Gauss–Seidel and Newton–Raphson methods provide almost identical
results. Similarly to the previous test, the proposed linear approxima-
tion accurately follows the solution generated by both classical
methods, with a negligible error, when the load and generation capa-
city grows below 6 times their nominal values. For variations in the
load and generation capacity equal or higher than 6 times their nominal
values, the proposed linear method exhibits a slightly higher error; in
this case, a maximum error equal to 0.69% is obtained at node 10 when
the generation capacity and load consumption have been incremented
10 times.

Finally, this second test put into evidence that the proposed method
can be used to analyze large systems with different power demands and
high penetration of distributed generation.

4.2. Analysis of the dc power grid with mesh topology

For this simulation case, the MATLAB software was used to imple-
ment the Newton–Raphson and Gauss–Seidel methods, the proposed
linear approach and the convex approximation of the power flow pro-
blem, which is widely used in the specialized literature as it is reported
in [22]. This case was implemented in MATLAB in order to use the CVX
solver to process the convex approximation following the method re-
ported in [32].

The adopted mesh configuration corresponds to the test system
presented in Fig. 2 including the connection of the dashed lines re-
ported in Table 2. For this system, it is illustrated the use of the pro-
posed model in the evaluation of the active power losses when the load
demand and generator injection increase from 1 to 10 times. Table 8
presents the active power losses calculated with the Newton–Raphson,
Gauss–Seidel, Convex approximation and the proposed linear ap-
proaches, respectively. The active power losses were calculated from
the voltage profile and conductance matrix using the following general
expression:

∑ ∑=
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⎢

⎛

⎝
⎜

⎞

⎠
⎟ −

⎤

⎦
⎥
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p G v v G v
i j

i j i iloss ij 0
2

� � (14)

The first component of (14) corresponds to the power losses associated
to the line conductance effects; if the system includes constant resistive

loads, the associated power demand must be subtracted from the con-
ductance matrix using the second component of (14). This last process
is needed since all resistive elements interconnected to the ith node are
lumped into the diagonal elements Gii of the conductance matrix, in-
cluding the constant resistive loads Gi0, which does not produce power
losses.

The simulation results, reported in Table 8, put into evidence that
the Gauss–Seidel and Convex approximation methods present estima-
tion errors lower than 5.711 × 10−5% and 2.943 × 10−6% with re-
spect to the Newton–Raphson method, respectively. The proposed
linear method provides very accurate results, with errors lower than
0.957%, when the generation and consumption values increment from
1 to 5 times their nominal values, which is not common in real oper-
ating scenarios for dc power grids. For increments in the load demand
and generation profiles higher than 5 times the errors are higher:
1.411% for 6 times, 1.979% for 7 times, 2.676% for 8 times, 3.519% for
9 times and 4.530% for 10 times.

On the other hand, the proposed linear method exhibits the shortest
calculation time: the proposed method requires only the 0.67% of the
average processing time required by the Newton–Raphson method.
Similarly, the processing of the proposed linear method only takes the
0.21% and 0.02% of the average processing times required by the
Gauss–Seidel and Convex solutions, respectively.

Therefore, the proposed solution exhibits the best performance
when the generation and consumption values increment from 1 to 5
times their nominal values. For higher increments, the designer must
analyze if the slightly higher error is acceptable. In any case, power
flow analyzes with generation and consumption increments higher than
1.5 times of the nominal values are not frequent, since the over-current
protection are usually calibrated to disconnect the system when the
currents overpass 1.5 times the load current [38]. Hence, it is important
to remark that increments in the power consumption up to 10 times of
the nominal load were considered, in this section, just to validate the
robustness of the proposed linear method, even when the power con-
sumption increases drastically. Finally, the processing times required by
the proposed linear approximation are much shorted in comparison
with the other methods, hence a satisfactory trade-off between accuracy
and speed is provided.

5. Conclusions and future works

The power flow analysis of dc power grids was explored in this
paper. A linear equivalent model was proposed based on Taylor's series
expansion, which leads to an explicit solution of the problem. This
characteristic makes possible to solve the power flow equations without
an iterative process, which it reduces the computational time sig-
nificantly. In order to evaluate the performance of the proposed solu-
tion, three widely adopted methods were implemented and tested,
namely the classical Newton–Raphson (nonlinear model), Gauss–Seidel
and the Convex formulation methods.

The simulation results demonstrate the robustness and effectiveness

Table 7
Voltage profile in p.u. at node 12 for different increments of the capacity of
generation and consumption.

Load increasing Newton–Raphson Gauss–Seidel Linear approx.

1 0.988057035 0.988057034 0.988058821
2 0.975439273 0.975439271 0.975455788
3 0.962101939 0.962101937 0.962165827
4 0.947988703 0.947988702 0.948161292
5 0.933028964 0.933028966 0.933411781
6 0.917133940 0.917133942 0.917883920
7 0.900190966 0.900190968 0.901541126
8 0.882054954 0.882054956 0.884343328
9 0.862535157 0.862535159 0.866246656
10 0.841373749 0.841373752 0.847203083

Table 8
Behavior of the active power losses for the mesh topology (p.u.).

Load
increa.

Newton–Raphson Gauss–Seidel Convex approx. Linear approx.

1 0.063602382 0.063602346 0.063602383 0.063573146
2 0.169358104 0.169358044 0.169358109 0.169091897
3 0.331695822 0.331695737 0.331695830 0.330567065
4 0.555455948 0.555455837 0.555455951 0.552103012
5 0.846210578 0.846210440 0.846210579 0.838113867
6 1.210428348 1.210428179 1.210428354 1.193349943
7 1.655690346 1.655690144 1.655690358 1.622926718
8 2.190977864 2.190977625 2.190977865 2.132356681
9 2.827063556 2.827063278 2.827063559 2.727584340
10 3.577055397 3.577055076 3.577055401 3.415024777
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of the proposed method, which exhibits a high grade of fidelity, when
compared to the nonlinear model, for load and generation increments
up to 500% of the nominal values. Therefore, the proposed linear model
is suitable to be used in real operating scenarios for dc power grids, in
which the levels of power variation are frequently close to 150%.

Then, the satisfactory accuracy and short processing times provided
by the proposed linear approximation can be very effective for reducing
the computational times of planning problems, and to implement ter-
tiary control systems for dc microgrids, for example, to optimize the
energy flows under different demand and generation scenarios.
Similarly, the proposed solution could be useful for performing plan-
ning studies of dc power grids embedded into mixed-integer nonlinear
programming models. This will minimize the computational efforts of
those analysis by eliminating of iterative process required by classical
power flow solution methods.

The proposed power flow analysis technique can be also used for
power losses minimization, economic power dispatch or any optimi-
zation problem via master-slave optimization structures. In this way,
the master algorithm defines the power generation or consumption in
all non-controlled voltage nodes with distributed energy resources,
using the proposed linear power flow approximation as the slave
strategy. Moreover, the linear model can be combined with ac coun-
terparts to solve power flow problems derived from hybrid ac-dc power
grids. In terms of real-time applications, the proposed linear model can
be integrated into control strategies for operating dc microgrids using
real-time computation devices.

It is also possible develop a method, based on the proposed linear
approximation, to analyze LVDC power microgrids with isolated zones
and distributed generation capabilities. That process will require a
distributed control approach to solve the voltage regulation problem:
an arbitrary distributed energy resource must be selected as a virtual
slack node; and the proposed linear model must be used, recursively,
for solving the power flow equations until all distributed generation
constraints are satisfied.
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